Finding Frequent Items in Data Streams

Linus Seelinger

December 9, 2014
Problem

- **Aim:** Find most frequent elements in data stream
- **Restrictions:**
 - Only 1 pass
 - Limited memory
- **Application:** Search engines, most frequent queries
- **Naive Solutions:**
 - Sort stream \rightarrow Multiple passes, memory
 - Counters for all distinct elements \rightarrow Memory
Problem

- **Aim:** Find most frequent elements in data stream
- **Restrictions:**
 - Only 1 pass
 - Limited memory
- **Application:** Search engines, most frequent queries
- **Naive Solutions:**
 - Sort stream → Multiple passes, memory
 - Counters for all distinct elements → Memory
Problem

- **Aim:** Find most frequent elements in data stream
- **Restrictions:**
 - Only 1 pass
 - Limited memory
- **Application:** Search engines, most frequent queries
- **Naive Solutions:**
 - Sort stream → Multiple passes, memory
 - Counters for all distinct elements → Memory
Problem

- **Aim:** Find most frequent elements in data stream
- **Restrictions:**
 - Only 1 pass
 - Limited memory
- **Application:** Search engines, most frequent queries
- **Naive Solutions:**
 - Sort stream → Multiple passes, memory
 - Counters for all distinct elements → Memory
Problem

- **Aim**: Find most frequent elements in data stream
- **Restrictions**:
 - Only 1 pass
 - Limited memory
- **Application**: Search engines, most frequent queries
- **Naive Solutions**:
 - Sort stream → Multiple passes, memory
 - Counters for all distinct elements → Memory
Problem

- **Aim:** Find most frequent elements in data stream
- **Restrictions:**
 - Only 1 pass
 - Limited memory
- **Application:** Search engines, most frequent queries
- **Naive Solutions:**
 - Sort stream → Multiple passes, memory
 - Counters for all distinct elements → Memory
Aim: Find most frequent elements in data stream

Restrictions:
- Only 1 pass
- Limited memory

Application: Search engines, most frequent queries

Naive Solutions:
- Sort stream → Multiple passes, memory
- Counters for all distinct elements → Memory
Problem

- **Aim:** Find most frequent elements in data stream
- **Restrictions:**
 - Only 1 pass
 - Limited memory
- **Application:** Search engines, most frequent queries
- **Naive Solutions:**
 - Sort stream → Multiple passes, memory
 - Counters for all distinct elements → Memory
Stream of elements $S = q_1, \ldots, q_n$

- $q_i \in O = \{o_1, \ldots, o_m\}$
- o_i occurs n_i times in S
- Order o_i so that $n_1 \geq n_2 \geq \ldots \geq n_m$
Stream of elements $S = q_1, \ldots, q_n$

$q_i \in O = \{o_1, \ldots, o_m\}$

o_i occurs n_i times in S

Order o_i so that $n_1 \geq n_2 \geq \ldots \geq n_m$
Stream of elements \(S = q_1, \ldots, q_n \)

\(q_i \in O = \{o_1, \ldots, o_m\} \)

\(o_i \) occurs \(n_i \) times in \(S \)

Order \(o_i \) so that \(n_1 \geq n_2 \geq \ldots \geq n_m \)
Input

- Stream of elements $S = q_1, \ldots, q_n$
- $q_i \in O = \{o_1, \ldots, o_m\}$
- o_i occurs n_i times in S
- Order o_i so that $n_1 \geq n_2 \geq \ldots \geq n_m$
Problem (formal)

\textit{FindCandidateTop}
- Input: Stream \(S \) and \(k, l \in \mathbb{N} \)
- Output: \(l \) elements containing the \(k \) most frequent elements

\textit{FindApproxTop}
- Input: Stream \(S \), \(k \in \mathbb{N} \) and \(\varepsilon \in \mathbb{R} \)
- Output: \(k \) elements with frequencies

\[n_i > (1 - \varepsilon)n_k \]
Problem (formal)

\textbf{FindCandidateTop}
- Input: Stream S and $k, l \in \mathbb{N}$
- Output: l elements containing the k most frequent elements

\textbf{FindApproxTop}
- Input: Stream S, $k \in \mathbb{N}$ and $\varepsilon \in \mathbb{R}$
- Output: k elements with frequencies

\[n_i > (1 - \varepsilon) n_k \]
Problem (formal)

FindCandidateTop
- **Input:** Stream S and $k, l \in \mathbb{N}$
- **Output:** l elements containing the k most frequent elements

FindApproxTop
- **Input:** Stream S, $k \in \mathbb{N}$ and $\varepsilon \in \mathbb{R}$
- **Output:** k elements with frequencies $n_i > (1 - \varepsilon) n_k$
Problem (formal)

FindCandidateTop
- Input: Stream S and $k, l \in \mathbb{N}$
- Output: l elements containing the k most frequent elements

FindApproxTop
- Input: Stream S, $k \in \mathbb{N}$ and $\varepsilon \in \mathbb{R}$
- Output: k elements with frequencies

$$n_i > (1 - \varepsilon)n_k$$
Problem (formal)

\textit{FindCandidateTop}

- \textbf{Input:} Stream S and $k, l \in \mathbb{N}$
- \textbf{Output:} l elements containing the k most frequent elements

\textit{FindApproxTop}

- \textbf{Input:} Stream S, $k \in \mathbb{N}$ and $\varepsilon \in \mathbb{R}$
- \textbf{Output:} k elements with frequencies

\[n_i > (1 - \varepsilon) n_k \]
Problem (formal)

FindCandidateTop
- **Input:** Stream S and $k, l \in \mathbb{N}$
- **Output:** l elements containing the k most frequent elements

FindApproxTop
- **Input:** Stream S, $k \in \mathbb{N}$ and $\varepsilon \in \mathbb{R}$
- **Output:** k elements with frequencies

\[n_i > (1 - \varepsilon)n_k \]
Algorithm
Data Structure - First Step

- Hashing function $s : O \rightarrow \{+1, -1\}$
- Counter $c \in \mathbb{Z}$
- Adding $q \in S$: $c += s[q]$
- Estimating $q \in O$: return $c \cdot s[q]$

Properties:

- $\mathbb{E}[c \cdot s[q]] = n_q$
- Variance extremely large
- Strong effect of frequent elements
Hashing function $s : O \rightarrow \{+1, -1\}$
Counter $c \in \mathbb{Z}$
Adding $q \in S$: $c += s[q]$
Estimating $q \in O$: return $c \cdot s[q]$

Properties:
- $\mathbb{E}[c \cdot s[q]] = n_q$
- Variance extremely large
- Strong effect of frequent elements
Data Structure - First Step

- **Hashing function** \(s : O \rightarrow \{+1, -1\} \)
- **Counter** \(c \in \mathbb{Z} \)
 - Adding \(q \in S \): \(c += s[q] \)
 - Estimating \(q \in O \): return \(c \cdot s[q] \)

Properties:

- \(\mathbb{E}[c \cdot s[q]] = n_q \)
- Variance extremely large
- Strong effect of frequent elements
Data Structure - First Step

- Hashing function $s : O \rightarrow \{+1, -1\}$
- Counter $c \in \mathbb{Z}$
- Adding $q \in S$: $c += s[q]$
 - Estimating $q \in O$: return $c \cdot s[q]$

Properties:

- $\mathbb{E}[c \cdot s[q]] = n_q$
- Variance extremely large
- Strong effect of frequent elements
Data Structure - First Step

- Hashing function $s : O \rightarrow \{+1, -1\}$
- Counter $c \in \mathbb{Z}$
- Adding $q \in S$: $c += s[q]$
- Estimating $q \in O$: return $c \cdot s[q]$

Properties:

- $\mathbb{E}[c \cdot s[q]] = n_q$
- Variance extremely large
- Strong effect of frequent elements
Data Structure - First Step

- Hashing function $s : O \rightarrow \{+1, -1\}$
- Counter $c \in \mathbb{Z}$
- Adding $q \in S$: $c += s[q]$
- Estimating $q \in O$: return $c \cdot s[q]$

Properties:

- $\mathbb{E}[c \cdot s[q]] = n_q$
- Variance extremely large
- Strong effect of frequent elements
Data Structure - First Step

- Hashing function \(s : O \rightarrow \{+1, -1\} \)
- Counter \(c \in \mathbb{Z} \)
- Adding \(q \in S \): \(c += s[q] \)
- Estimating \(q \in O \): return \(c \cdot s[q] \)

Properties:

- \(\mathbb{E}[c \cdot s[q]] = n_q \)
- Variance extremely large
- Strong effect of frequent elements
Data Structure - First Step

- Hashing function $s : O \rightarrow \{+1, -1\}$
- Counter $c \in \mathbb{Z}$
- Adding $q \in S$: $c += s[q]$
- Estimating $q \in O$: return $c \cdot s[q]$

Properties:

- $\mathbb{E}[c \cdot s[q]] = n_q$
- Variance extremely large
- Strong effect of frequent elements
Data Structure - Second Step

- Independent hashing functions $s_1, \ldots, s_t : O \rightarrow \{+1, -1\}$
- Counters $c_1, \ldots, c_t \in \mathbb{Z}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $c_i += s_i[q]$
- Estimating $q \in O$: return median$_i \{c_i \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[c_i \cdot s_i[q]] = n_q$
- Lower variance for mean or median! \rightarrow Stochastic independence!
- Strong effect of frequent items
Data Structure - Second Step

- Independent hashing functions $s_1, \ldots, s_t : O \rightarrow \{+1, -1\}$
- Counters $c_1, \ldots, c_t \in \mathbb{Z}$
 - Adding $q \in S$: For $i = 1, \ldots, t$: $c_i += s_i[q]$
 - Estimating $q \in O$: return median$_i\{c_i \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[c_i \cdot s_i[q]] = n_q$
- Lower variance for mean or median! \rightarrow Stochastic independence!
- Strong effect of frequent items
Data Structure - Second Step

- Independent hashing functions $s_1, \ldots, s_t : O \rightarrow \{+1, -1\}$
- Counters $c_1, \ldots, c_t \in \mathbb{Z}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $c_i += s_i[q]$
 - Estimating $q \in O$: return median$_i\{c_i \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[c_i \cdot s_i[q]] = n_q$
- Lower variance for mean or median! \rightarrow Stochastic independence!
- Strong effect of frequent items
Data Structure - Second Step

- Independent hashing functions $s_1, \ldots, s_t : O \rightarrow \{+1, -1\}
- Counters $c_1, \ldots, c_t \in \mathbb{Z}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $c_i += s_i[q]$
- Estimating $q \in O$: return median$_i\{c_i \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[c_i \cdot s_i[q]] = n_q$
- Lower variance for mean or median! \rightarrow Stochastic independence!
- Strong effect of frequent items
Data Structure - Second Step

- Independent hashing functions $s_1, \ldots, s_t : O \to \{+1, -1\}$
- Counters $c_1, \ldots, c_t \in \mathbb{Z}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $c_i += s_i[q]$
- Estimating $q \in O$: return median$_i\{c_i \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[c_i \cdot s_i[q]] = n_q$
- Lower variance for mean or median! → Stochastic independence!
- Strong effect of frequent items
Data Structure - Second Step

- Independent hashing functions \(s_1, \ldots, s_t : O \rightarrow \{+1, -1\} \)
- Counters \(c_1, \ldots, c_t \in \mathbb{Z} \)
- Adding \(q \in S \): For \(i = 1, \ldots, t \): \(c_i += s_i[q] \)
- Estimating \(q \in O \): return median\(i \{ c_i \cdot s_i[q] \} \)

Properties:

- \(\mathbb{E}[c_i \cdot s_i[q]] = n_q \)
- Lower variance for mean or median! \(\rightarrow \) Stochastic independence!
- Strong effect of frequent items
Data Structure - Second Step

- Independent hashing functions $s_1, \ldots, s_t : O \rightarrow \{+1, -1\}$
- Counters $c_1, \ldots, c_t \in \mathbb{Z}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $c_i += s_i[q]$
- Estimating $q \in O$: return median$_i\{c_i \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[c_i \cdot s_i[q]] = n_q$
- Lower variance for mean or median! \rightarrow Stochastic independence!
- Strong effect of frequent items
Data Structure - Final Step

- Indep. hashing functions $s_1, \ldots, s_t : O \rightarrow \{+1, -1\}$
- Indep. hashing functions $h_1, \ldots, h_t : O \rightarrow \{1, \ldots, b\}$
- Array of Counters $c \in \mathbb{Z}^{t \times b}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $h_i[q] += s_i[q]$
- Estimating $q \in O$: return median$_i \{h_i[q] \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[h_i[q] \cdot s_i[q]] = n_q$
- Effect of frequent elements limited
Data Structure - Final Step

- Indep. hashing functions $s_1, \ldots, s_t : O \rightarrow \{+1, -1\}$
- Indep. hashing functions $h_1, \ldots, h_t : O \rightarrow \{1, \ldots, b\}$
- Array of Counters $c \in \mathbb{Z}^{t \times b}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $h_i[q] += s_i[q]$
- Estimating $q \in O$: return median$_i\{h_i[q] \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[h_i[q] \cdot s_i[q]] = n_q$
- Effect of frequent elements limited
Data Structure - Final Step

- Indep. hashing functions $s_1, \ldots, s_t : O \rightarrow \{+1, -1\}$
- Indep. hashing functions $h_1, \ldots, h_t : O \rightarrow \{1, \ldots, b\}$
- Array of Counters $c \in \mathbb{Z}^{t \times b}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $h_i[q] += s_i[q]$
- Estimating $q \in O$: return median$_i\{h_i[q] \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[h_i[q] \cdot s_i[q]] = n_q$
- Effect of frequent elements limited
Data Structure - Final Step

- Indep. hashing functions $s_1, \ldots, s_t : O \to \{+1, -1\}$
- Indep. hashing functions $h_1, \ldots, h_t : O \to \{1, \ldots, b\}$
- Array of Counters $c \in \mathbb{Z}^{t \times b}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $h_i[q] += s_i[q]$
- Estimating $q \in O$: return median$_i\{h_i[q] \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[h_i[q] \cdot s_i[q]] = n_q$
- Effect of frequent elements limited
Data Structure - Final Step

- Indep. hashing functions $s_1, \ldots, s_t : O \to \{+1, -1\}$
- Indep. hashing functions $h_1, \ldots, h_t : O \to \{1, \ldots, b\}$
- Array of Counters $c \in \mathbb{Z}^{t \times b}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $h_i[q] += s_i[q]$
- Estimating $q \in O$: return $\text{median}_i \{h_i[q] \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[h_i[q] \cdot s_i[q]] = n_q$
- Effect of frequent elements limited
Data Structure - Final Step

- Indep. hashing functions $s_1, \ldots, s_t : O \rightarrow \{+1, -1\}$
- Indep. hashing functions $h_1, \ldots, h_t : O \rightarrow \{1, \ldots, b\}$
- Array of Counters $c \in \mathbb{Z}^{t \times b}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $h_i[q] += s_i[q]$
- Estimating $q \in O$: return median$_i \{h_i[q] \cdot s_i[q]\}$

Properties:

- $\mathbb{E}[h_i[q] \cdot s_i[q]] = n_q$
- Effect of frequent elements limited
Data Structure - Final Step

- Indep. hashing functions $s_1, \ldots, s_t : O \rightarrow \{+1, -1\}$
- Indep. hashing functions $h_1, \ldots, h_t : O \rightarrow \{1, \ldots, b\}$
- Array of Counters $c \in \mathbb{Z}^{t \times b}$
- Adding $q \in S$: For $i = 1, \ldots, t$: $h_i[q] += s_i[q]$
- Estimating $q \in O$: return median$_i\{h_i[q] \cdot s_i[q]\}$

Properties:
- $\mathbb{E}[h_i[q] \cdot s_i[q]] = n_q$
- Effect of frequent elements limited
Definition (CountSketch)

Data structure containing these hashing functions, the array c and the operations Add and $Estimate$.

→ Algorithm?
Definition (CountSketch)

Data structure containing these hashing functions, the array c and the operations Add and $Estimate$.

→ Algorithm?
Algorithm

- CountSketch \(C \) for estimation, with \(b, t \) chosen appropriately
- Heap \(H \) for top \(k \) elements (with counters)

For each \(q \) in data stream \(q_1, \ldots, q_n \):

1. Add(\(C, q \))
 - If \(q \in H \): Increment its count
2. else: If Estimate(\(C, q \)) greater than smallest element in \(H \), add \(q \) to \(H \) and remove smallest element
Algorithm

- CountSketch C for estimation, with b, t chosen appropriately
- Heap H for top k elements (with counters)

For each q in data stream q_1, \ldots, q_n:

1. Add(C, q)
 - If $q \in H$: Increment its count
2. else: If Estimate(C, q) greater than smallest element in H, add q to H and remove smallest element
Algorithm

- CountSketch C for estimation, with b, t chosen appropriately
- Heap H for top k elements (with counters)

For each q in data stream q_1, \ldots, q_n:

1. Add(C, q)

 If $q \in H$: Increment its count

2. else: If Estimate(C, q) greater than smallest element in H, add q to H and remove smallest element
Algorithm

- CountSketch C for estimation, with b, t chosen appropriately
- Heap H for top k elements (with counters)

For each q in data stream q_1, \ldots, q_n:

1. Add(C, q)
 - If $q \in H$: Increment its count
2. else: If Estimate(C, q) greater than smallest element in H, add q to H and remove smallest element
Algorithm

- CountSketch C for estimation, with b, t chosen appropriately
- Heap H for top k elements (with counters)

For each q in data stream q_1, \ldots, q_n:

1. Add(C, q)
 - If $q \in H$: Increment its count
2. else: If Estimate(C, q) greater than smallest element in H, add q to H and remove smallest element
Analysis - Expectation and Variance
Expectation

Lemma

\[\mathbb{E}[h_i[q]s_i[q]] = n_q \]

Proof.

\[h_i[q]s_i[q] = n_q + s_i[q] \sum_{q' \in A_i[q]} n_q's_i[q'] \]

\[
\mathbb{E}[h_i[q]s_i[q]]
= n_q + \mathbb{E} \left[s_i[q] \sum_{q' \in A_i[q]} n_q's_i[q'] \right]
= n_q + \sum_{q' \in A_i[q]} \mathbb{E}[n_q's_i[q]] \mathbb{E}[s_i[q']] = 0
\]
Expectation

Lemma

\[\mathbb{E}[h_i[q]s_i[q]] = n_q \]

Proof.

\[h_i[q]s_i[q] = n_q + s_i[q] \sum_{q' \in A_i[q]} n_{q'}s_i[q'] \]

\[
\begin{align*}
\mathbb{E}[h_i[q]s_i[q]] &= n_q + \mathbb{E} \left[s_i[q] \sum_{q' \in A_i[q]} n_{q'}s_i[q'] \right] \\
&= n_q + \sum_{q' \in A_i[q]} \mathbb{E}[n_{q'}s_i[q]] \mathbb{E}[s_i[q']] \\
&= n_q
\end{align*}
\]
Expectation

Lemma

\[\mathbb{E}[h_i[q]s_i[q]] = n_q \]

Proof.

\[h_i[q]s_i[q] = n_q + s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \]

\[\mathbb{E}[h_i[q]s_i[q]] = n_q + \mathbb{E} \left[s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \right] \]

\[\text{pairwise independence} \]

\[\text{=} \]

\[n_q + \sum_{q' \in A_i[q]} \mathbb{E}[n_{q'} s_i[q]] \mathbb{E}[s_i[q']] = 0 \]

\[= n_q \]
Expectation

Lemma

\[\mathbb{E}[h_i[q]s_i[q]] = n_q \]

Proof.

\[h_i[q]s_i[q] = n_q + s_i[q] \sum_{q' \in A_i[q]} n_{q'}s_i[q'] \]

\[\mathbb{E}[h_i[q]s_i[q]] = n_q + \mathbb{E} \left[s_i[q] \sum_{q' \in A_i[q]} n_{q'}s_i[q'] \right] \]

pairwise independence

\[= n_q + \sum_{q' \in A_i[q]} \mathbb{E}[n_{q'}s_i[q]] \mathbb{E}[s_i[q']] \]

\[= 0 \]

\[= n_q \]
Expectation

Lemma

\[\mathbb{E}[h_i[q]s_i[q]] = n_q \]

Proof.

\[h_i[q]s_i[q] = n_q + s_i[q] \sum_{q' \in A_i[q]} n_{q'}s_i[q'] \]

\[
\mathbb{E}[h_i[q]s_i[q]] = n_q + \mathbb{E}\left[s_i[q] \sum_{q' \in A_i[q]} n_{q'}s_i[q'] \right]
\]

pairwise independence

\[
= n_q + \sum_{q' \in A_i[q]} \mathbb{E}[n_{q'}s_i[q]]\mathbb{E}[s_i[q']] = 0
\]

\[= n_q \]
Variance

Lemma

\[
\text{Var}(h_i[q]s_i[q]) = v_i[q] := \sum_{q' \in A_i[q]} n_{q'}^2
\]
\[h_i[q]s_i[q] = n_q + s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \]

\[
\text{Var}[h_i[q]s_i[q]] = \mathbb{E}[(h_i[q]s_i[q] - n_q)^2]
\]

\[
= \mathbb{E} \left[\left(s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \right)^2 \right]
\]

\[
= s_i[q]^2 \sum_{q', q'' \in A_i[q]} \mathbb{E}[n_{q'} s_i[q'] n_{q''} s_i[q'']]
\]

pairwise independence

\[
= \sum_{q' \in A_i[q]} \mathbb{E} \left[n_{q'}^2 s_i[q']^2 \right]
\]

\[
+ \sum_{q' \neq q'' \in A_i[q]} \mathbb{E}[n_{q'} n_{q''} s_i[q']] \mathbb{E}[s_i[q'']] = 0
\]

\[
= \sum_{q' \in A_i[q]} n_{q'}^2 = v_i[q]
\]
\[h_i[q]s_i[q] = n_q + s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \]

\[\text{Var}[h_i[q]s_i[q]] = \mathbb{E}[(h_i[q]s_i[q] - n_q)^2] \]

\[= \mathbb{E} \left(\left(s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \right)^2 \right) \]

\[= s_i[q]^2 \sum_{q', q'' \in A_i[q]} \mathbb{E}[n_{q'} s_i[q'] n_{q''} s_i[q'']] \]

\(=1\) pairwise

\[= \sum_{q' \in A_i[q]} \mathbb{E} \left[n_{q'}^2 s_i[q']^2 \right] \]

\(=1\) independence

\[+ \sum_{q' \neq q'' \in A_i[q]} \mathbb{E}[n_{q'} n_{q''} s_i[q']] \mathbb{E}[s_i[q'']] \]

\(=0\)

\[= \sum_{q' \in A_i[q]} n_{q'}^2 = v_i[q] \]
\[h_i[q]s_i[q] = n_q + s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \]

\[
\operatorname{Var}[h_i[q]s_i[q]] = \mathbb{E}[(h_i[q]s_i[q] - n_q)^2] \\
= \mathbb{E} \left[\left(s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \right)^2 \right] \\
= s_i[q]^2 \sum_{q', q'' \in A_i[q]} \mathbb{E}[n_{q'} s_i[q'] n_{q''} s_i[q'']] \\
\overset{\text{pairwise independence}}{=} \sum_{q' \in A_i[q]} \mathbb{E} \left[n_{q'}^2 s_i[q']^2 \right] = 1 \\
+ \sum_{q' \neq q'' \in A_i[q]} \mathbb{E}[n_{q'} n_{q''} s_i[q']] \mathbb{E}[s_i[q'']] = 0 \\
= \sum_{q' \in A_i[q]} n_{q'}^2 = v_i[q] \]
\[h_i[q]s_i[q] = n_q + s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \]

\[
\begin{align*}
\text{Var}[h_i[q]s_i[q]] &= \mathbb{E}[(h_i[q]s_i[q] - n_q)^2] \\
&= \mathbb{E} \left[\left(s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \right)^2 \right] \\
&= s_i[q]^2 \sum_{q', q'' \in A_i[q]} \mathbb{E}[n_{q'} s_i[q'] n_{q''} s_i[q'']] \\
&\underset{\text{pairwise independence}}{=} \sum_{q' \in A_i[q]} \mathbb{E} \left[n_{q'}^2 s_i[q']^2 \right] \\
&\underset{\text{independence}}{=} \sum_{q' \neq q'' \in A_i[q]} \mathbb{E}[n_{q'} n_{q''} s_i[q'] \mathbb{E}[s_i[q'']]] \\
&= \sum_{q' \in A_i[q]} n_{q'}^2 = v_i[q]
\end{align*}
\]
\[h_i[q]s_i[q] = n_q + s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \]

\[
\text{Var}[h_i[q]s_i[q]] = \mathbb{E}[(h_i[q]s_i[q] - n_q)^2]
\]

\[
= \mathbb{E} \left[\left(s_i[q] \sum_{q' \in A_i[q]} n_{q'} s_i[q'] \right)^2 \right]
\]

\[
= s_i[q]^2 \sum_{q' \in A_i[q]} \mathbb{E}[n_{q'} s_i[q'] n_{q''} s_i[q'']] \\
= \sum_{q' \in A_i[q]} \mathbb{E} \left[n_{q'}^2 s_i[q']^2 \right] \\
+ \sum_{q' \neq q'' \in A_i[q]} \mathbb{E}[n_{q'} n_{q''} s_i[q']] \mathbb{E}[s_i[q'']] = 0
\]

\[
= \sum_{q' \in A_i[q]} n_{q'}^2 = v_i[q]
\]
\[h_i[q]s_i[q] = n_q + s_i[q] \sum_{q' \in A_i[q]} n_q's_i[q'] \]

\[
\text{Var}[h_i[q]s_i[q]] = \mathbb{E}[(h_i[q]s_i[q] - n_q)^2]
\]
\[
= \mathbb{E}\left[\left(s_i[q] \sum_{q' \in A_i[q]} n_q's_i[q']\right)^2\right]
\]
\[
= s_i[q]^2 \sum_{q',q'' \in A_i[q]} \mathbb{E}[n_q's_i[q']n_q''s_i[q'']]
\]
\[
= \sum_{q' \in A_i[q]} \mathbb{E}\left[n_q'^2s_i[q']^2\right]_{=1}
\]
\[
+ \sum_{q' \neq q'' \in A_i[q]} \mathbb{E}[n_q'n_{q''}s_i[q']][\mathbb{E}[s_i[q'']]]_{=0}
\]
\[
= \sum_{q' \in A_i[q]} n_{q'}^2 = v_i[q]
\]
Summary

Lemma

\[\mathbb{E}[h_i[q]s_i[q]] = n_q \]

Lemma

\[\text{Var}(h_i[q]s_i[q]) = v_i[q] := \sum_{q' \in A_i[q]} n_{q'}^2 \]
Analysis - Deviation Bound
Deviation Bound

<table>
<thead>
<tr>
<th>Event</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. SmallDeviation</td>
<td>$</td>
</tr>
<tr>
<td>ii. NoCollisions</td>
<td>$A_i[q] = A_i^{>k}[q]$</td>
</tr>
<tr>
<td>iii. SmallVariance</td>
<td>$v_i^{>k}[q] \leq 8 \frac{1}{b} \sum_{j=k+1}^{m} n_j^2$</td>
</tr>
</tbody>
</table>

Lemma

If all events are fulfilled, it holds

$$|h_i[q]s_i[q] - n_q| \leq 8\gamma$$

where

$$\gamma := \sqrt{\frac{1}{b} \sum_{j=k+1}^{m} n_j^2}$$
Deviation Bound

<table>
<thead>
<tr>
<th>Event</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. SmallDeviation</td>
<td>$</td>
</tr>
<tr>
<td>ii. NoCollisions</td>
<td>$A_i[q] = A_i^{\geq k}[q]$</td>
</tr>
<tr>
<td>iii. SmallVariance</td>
<td>$v_i^{\geq k}[q] \leq \frac{8}{b} \sum_{j=k+1}^{m} n_j^2$</td>
</tr>
</tbody>
</table>

Lemma

If all events are fulfilled, it holds

$$|h_i[q]s_i[q] - n_q| \leq 8\gamma$$

where

$$\gamma := \sqrt{\frac{1}{b} \sum_{j=k+1}^{m} n_j^2}$$
Deviation Bound

| | SmallDeviation | $|h_i[q]s_i[q] - n_q|^2 \leq 8 \text{Var}[h_i[q]s_i[q]]$ |
|---|----------------|--|
| i. | NoCollisions | $A_i[q] = A_i^{>k}[q]$ |
| ii.| | |
| iii.| SmallVariance | $v_i^{>k}[q] \leq 8 \frac{1}{b} \sum_{j=k+1}^{m} n_j^2$ |

Proof.

\[
|h_i[q]s_i[q] - n_q|^2 \quad \overset{i.}{\leq} \quad 8 \text{Var}[h_i[q]s_i[q]] \\
= 8v_i[q] \\
\overset{ii.}{=} 8v_i^{>k}[q] \\
\overset{iii.}{=} 8^2 \frac{1}{b} \sum_{j=k+1}^{m} n_j^2 = (8\gamma)^2 \\
= \gamma^2 \]

Deviation Bound

i.	SmallDeviation	\(h_i[q]s_i[q] - n_q	^2 \leq 8 \text{Var}[h_i[q]s_i[q]]
ii.	NoCollisions	\(A_i[q] = A_i^{\geq k}[q]		
iii.	SmallVariance	\(v_i^{\geq k}[q] \leq 8 \frac{1}{b} \sum_{j=k+1}^{m} n_j^2		

Proof.

\[
|h_i[q]s_i[q] - n_q|^2 \leq 8 \text{Var}[h_i[q]s_i[q]] = 8v_i[q] = 8v_i^{\geq k}[q] = 8^2 \frac{1}{b} \sum_{j=k+1}^{m} n_j^2 = (8\gamma)^2 = \gamma^2
\]
Deviation Bound

| | SmallDeviation | \(|h_i[q]s_i[q] - n_q|^2 \leq 8 \text{Var}[h_i[q]s_i[q]]\) |
|---|----------------|--|
| i. | | |
| ii. | NoCollisions | \(A_i[q] = A_i^\geq k[q]\) |
| iii. | SmallVariance | \(\nu_i^\geq k[q] \leq 8 \frac{1}{b} \sum_{j=k+1}^{m} n_j^2\) |

Proof.

\[
|h_i[q]s_i[q] - n_q|^2 \leq 8 \text{Var}[h_i[q]s_i[q]]
= 8\nu_i[q]
\]

\[
\leq 8\nu_i^\geq k[q]
\]

\[
= 8^2 \frac{1}{b} \sum_{j=k+1}^{m} n_j^2
= (8\gamma)^2
\]

\[
= \gamma^2
\]
Deviation Bound

| i. | SmallDeviation | $|h_i[q]s_i[q] - n_q|^2 \leq 8 \text{Var}[h_i[q]s_i[q]]$ |
|-----|----------------|--|
| ii. | NoCollisions | $A_i[q] = A_i^{>k}[q]$ |
| iii. | SmallVariance | $\nu_i^{>k}[q] \leq 8^{1/b} \sum_{j=k+1}^{m} n_j^2$ |

Proof.

\[
|h_i[q]s_i[q] - n_q|^2 \leq 8 \text{Var}[h_i[q]s_i[q]] = 8\nu_i[q] = 8\nu_i^{>k}[q] \\
\equiv 8^2 \frac{1}{b} \sum_{j=k+1}^{m} n_j^2 = (8\gamma)^2 = \gamma^2
\]

Event 1

Lemma

\[\mathbb{P}[\text{SmallDeviation}] \geq 1 - \frac{1}{8} \]

Proof.

\[
\begin{align*}
\mathbb{P}[\neg \text{SmallDeviation}] &= \mathbb{P}[|h_i[q]s_i[q] - n_q|^2 > 8 \text{Var}[h_i[q]s_i[q]]] \\
&\leq \mathbb{E}[|h_i[q]s_i[q] - n_q|^2] / 8 \text{Var}[h_i[q]s_i[q]] \\
&= \frac{1}{8}
\end{align*}
\]
Event 1

Lemma

\[\mathbb{P}[\text{SmallDeviation}] \geq 1 - \frac{1}{8} \]

Proof.

\[\mathbb{P}[\neg \text{SmallDeviation}] = \mathbb{P}[|h_1[q]s_1[q] - n_q|^2 > 8 \text{Var}[h_1[q]s_1[q]]] \]

\[\leq \frac{\mathbb{E}[|h_1[q]s_1[q] - n_q|^2]}{8 \text{Var}[h_1[q]s_1[q]]} = \frac{1}{8} \]
Event 1

Lemma

\[\mathbb{P}[\text{SmallDeviation}] \geq 1 - \frac{1}{8} \]

Proof.

\[\mathbb{P}[\neg \text{SmallDeviation}] = \mathbb{P}[|h_i[q]s_i[q] - n_q|^2 > 8 \text{Var}[h_i[q]s_i[q]]] \]

Markov

\[\leq \frac{\mathbb{E}[|h_i[q]s_i[q] - n_q|^2]}{8 \text{Var}[h_i[q]s_i[q]]} \]

\[= \frac{1}{8} \]
Event 1

Lemma

\[P[\text{SmallDeviation}] \geq 1 - \frac{1}{8} \]

Proof.

\[
P[\neg \text{SmallDeviation}] = P[|h_i[q]s_i[q] - n_q|^2 > 8 \text{Var}[h_i[q]s_i[q]]] \\
\leq \frac{E[|h_i[q]s_i[q] - n_q|^2]}{8 \text{Var}[h_i[q]s_i[q]]} \\
= \frac{1}{8}
\]
Event 2

Lemma

Choose $b \geq 8k$. *Then*

$$P[\text{NoCollisions}] \geq 1 - \frac{1}{8}$$

Proof.

For suitable hashing functions h_i, it holds

$$P[o_i \not\in A_i[q]] = 1 - \frac{1}{b}.$$

Therefore, by the union bound

$$P[\text{NoCollisions}] \geq 1 - k\frac{1}{b} \geq 1 - \frac{1}{8}.$$
Lemma

Choose $b \geq 8k$. Then

$$\mathbb{P}[\text{NoCollisions}] \geq 1 - \frac{1}{8}$$

Proof.

For suitable hashing functions h_i, it holds

$$\mathbb{P}[o_i \not\in A_i[q]] = 1 - \frac{1}{b}.$$

Therefore, by the union bound

$$\mathbb{P}[\text{NoCollisions}] \geq 1 - k \cdot \frac{1}{b} \geq 1 - \frac{1}{8}.$$
Lemma

Choose \(b \geq 8k \). Then

\[
P[\text{NoCollisions}] \geq 1 - \frac{1}{8}
\]

Proof.

For suitable hashing functions \(h_i \), it holds

\[
P[o_i \not\in A_i[q]] = 1 - \frac{1}{b}.
\]

Therefore, by the union bound

\[
P[\text{NoCollisions}] \geq 1 - k \frac{1}{b} \geq 1 - \frac{1}{8}.
\]
Lemma

\[\mathbb{P}[\text{SmallVariance}] \geq 1 - \frac{1}{8} \]

Proof.

\[
\begin{align*}
\mathbb{P}[\neg \text{SmallVariance}] &= \mathbb{P}[v_i^k[q] > 8\gamma^2] \\
&\leq \mathbb{E}[v_i^k[q]] \\
&\leq \frac{1}{8 \gamma^2} \\
&= \frac{1}{8}
\end{align*}
\]
Event 3

Lemma

\[P[\text{SmallVariance}] \geq 1 - \frac{1}{8} \]

Proof.

\[P[\neg \text{SmallVariance}] = P[v_i > k[q] > 8\gamma^2] \]

\[\leq E[v_i > k[q]] \]

\[= \frac{1}{8} \]

Markov
Event 3

Lemma

\[P[\text{SmallVariance}] \geq 1 - \frac{1}{8} \]

Proof.

\[P[\neg \text{SmallVariance}] = P[v_i^{>k}[q] > 8\gamma^2] \]

Markov

\[\leq \frac{E[v_i^{>k}[q]]}{8\gamma^2} = \frac{1}{8} \]
Event 3

Lemma

$$\mathbb{P}[\text{SmallVariance}] \geq 1 - \frac{1}{8}$$

Proof.

$$\mathbb{P}[\neg \text{SmallVariance}] = \mathbb{P}[v_i^{>k}[q] > 8\gamma^2]$$

Markov

$$\leq \frac{\mathbb{E}[v_i^{>k}[q]]}{8\gamma^2}$$

$$= \frac{1}{8}$$
Deviation Bound

Choose $b \geq 8k$. All events occur with probability $\geq 1 - \frac{1}{8}$

$\Rightarrow \mathbb{P}[\text{SmallDeviation} \land \text{NoCollisions} \land \text{SmallVariance}] \geq \frac{5}{8}$

$\Rightarrow \mathbb{P}[|h_i[q]s_i[q] - n_q| \leq 8\gamma] \geq \frac{5}{8}$

\Rightarrow Bound is expected to hold in $\frac{5}{8} t$ rows
Deviation Bound

Choose $b \geq 8k$. All events occur with probability $\geq 1 - \frac{1}{8}$

$\Rightarrow \quad P[\text{SmallDeviation} \land \text{NoCollisions} \land \text{SmallVariance}] \geq \frac{5}{8}$

$\Rightarrow \quad P[|h_i[q]s_i[q] - n_q| \leq 8\gamma] \geq \frac{5}{8}$

$\Rightarrow \quad \text{Bound is expected to hold in } \frac{5}{8}t \text{ rows}$
Deviation Bound

Choose $b \geq 8k$. All events occur with probability $\geq 1 - \frac{1}{8}$

$$\Rightarrow \quad P[\text{SmallDeviation} \land \text{NoCollisions} \land \text{SmallVariance}] \geq \frac{5}{8}$$

$$\Rightarrow \quad P[|h_i[q]s_i[q] - n_q| \leq 8\gamma] \geq \frac{5}{8}$$

$$\Rightarrow \quad \text{Bound is expected to hold in } \frac{5}{8}t \text{ rows}$$
Deviation Bound

Choose $b \geq 8k$. All events occur with probability $\geq 1 - \frac{1}{8}$

$\Rightarrow \mathbb{P}[\text{SmallDeviation} \land \text{NoCollisions} \land \text{SmallVariance}] \geq \frac{5}{8}$

$\Rightarrow \mathbb{P}[|h[q]s[q] - n_q| \leq 8\gamma] \geq \frac{5}{8}$

\Rightarrow Bound is expected to hold in $\frac{5}{8}t$ rows
Bound is expected to hold in $\frac{5}{8}t$ rows

Choose $t = \log \left(\frac{n}{\delta} \right)$

\[\text{Chernoff} \quad \Rightarrow \quad \text{Number of these is at least } \frac{t}{2} \text{ with probability } 1 - \frac{\delta}{n} \]

\[\Rightarrow \quad \text{Bound holds for median with that probability} \]
Deviation Bound

Bound is expected to hold in $\frac{5}{8} t$ rows

Choose $t = \log \left(\frac{n}{\delta} \right)$

\Rightarrow Number of these is at least $\frac{t}{2}$ with probability $1 - \frac{\delta}{n}$

\Rightarrow Bound holds for median with that probability
Deviation Bound

Bound is expected to hold in $\frac{5}{8} t$ rows

Choose $t = \log \left(\frac{n}{\delta} \right)$

\[\text{Chernoff} \Rightarrow \text{Number of these is at least } \frac{t}{2} \text{ with probability } 1 - \frac{\delta}{n} \]

\Rightarrow Bound holds for median with that probability
Deviation Bound

Bound is expected to hold in $\frac{5}{8} t$ rows

Choose $t = \log \left(\frac{n}{\delta} \right)$

Chernoff \Rightarrow Number of these is at least $t / 2$ with probability $1 - \frac{\delta}{n}$

\Rightarrow Bound holds for median with that probability
Choose $t = \log \left(\frac{n}{\delta} \right)$, $b \geq 8k$

$| \text{median}_i \{ h_i[q]s_i[q] \} - n_q | \leq 8\gamma$ with probability $\geq 1 - \frac{\delta}{n}$
Extended Applications
Parallelisation

- CountSketch additive \rightarrow Parallel counting
 - MapReduce scheme possible
 - Only little data transfer necessary
Parallelisation

- CountSketch additive → Parallel counting
- MapReduce scheme possible
- Only little data transfer necessary
Parallelisation

- CountSketch additive \rightarrow Parallel counting
- MapReduce scheme possible
- Only little data transfer necessary
Exact Results

- FindApproxTop output:
 k elements with frequencies

 \[n_i > (1 - \varepsilon)n_k \]

- Increase heap size to certainly include k most frequent elements (distribution dependent!)
- Exact count for heap elements in second pass
Exact Results

- FindApproxTop output: k elements with frequencies

$$n_i > (1 - \varepsilon)n_k$$

- Increase heap size to certainly include k most frequent elements (\rightarrow distribution dependent!)
- Exact count for heap elements in second pass
Exact Results

- FindApproxTop output:
 - k elements with frequencies

 $$n_i > (1 - \varepsilon)n_k$$

- Increase heap size to certainly include k most frequent elements (distribution dependent!)
- Exact count for heap elements in second pass
Frequency Change Detection

- **Data streams** S_1, S_2, only one *CountSketch*
- **First pass (Estimating):**
 - For $q \in S_1$:
 $$ h_i[q] += s_i[q] $$
 - For $q \in S_2$:
 $$ h_i[q] -= s_i[q] $$
- **Second pass (Counting candidates):**
 - Track elements with largest absolute estimates
 - Maintain exact counts
Frequency Change Detection

- Data streams S_1, S_2, only one CountSketch
- First pass (Estimating):
 - For $q \in S_1$:
 \[h_i[q] += s_i[q] \]
 - For $q \in S_2$:
 \[h_i[q] -= s_i[q] \]
- Second pass (Counting candidates):
 - Track elements with largest absolute estimates
 - Maintain exact counts
Frequency Change Detection

- Data streams S_1, S_2, only one CountSketch
- First pass (Estimating):
 - For $q \in S_1$:
 $$h_i[q] += s_i[q]$$
 - For $q \in S_2$:
 $$h_i[q] -= s_i[q]$$
- Second pass (Counting candidates):
 - Track elements with largest absolute estimates
 - Maintain exact counts
Conclusion
Conclusion

- Fast algorithm with logarithmic space bound
- Only one pass required
- Using probabilistic estimates
- Easy to implement and parallelise
- Further applications based on CountSketch possible
Conclusion

- Fast algorithm with logarithmic space bound
- Only one pass required
 - Using probabilistic estimates
 - Easy to implement and parallelise
- Further applications based on CountSketch possible
Conclusion

- Fast algorithm with logarithmic space bound
- Only one pass required
- Using probabilistic estimates
- Easy to implement and parallelise
- Further applications based on CountSketch possible
Conclusion

- Fast algorithm with logarithmic space bound
- Only one pass required
- Using probabilistic estimates
- Easy to implement and parallelise
- Further applications based on CountSketch possible
Conclusion

- Fast algorithm with logarithmic space bound
- Only one pass required
- Using probabilistic estimates
- Easy to implement and parallelise
- Further applications based on CountSketch possible
∃{?_1, ?_2, \ldots}?