
RECONSTRUCTING THE DRAWING PROCESS OF
REPRODUCTIONS FROM MEDIEVAL IMAGES

Antonio Monroy1, Bernd Carqué1,2, Björn Ommer1

1 Interdisciplinary Center for Scientific Computing, 2 Institute for European Art History
University of Heidelberg, Germany

{amonroy,bommer,bcarque}@iwr.uni-heidelberg.de

ABSTRACT
Based on 14th century paintings and their 18th century man-
ual reproductions we reconstruct the temporal order of the
sketching process and analyze how images were altered by
artists. Therefore, we present a novel algorithm for decom-
posing images into groups of parts that were similarly trans-
formed between images. Moreover, a method is proposed that
orders all parts based on the relatedness of their transforma-
tion. Based on this ordering, a third dimension, which corre-
sponds to the timeline of the drawing process, is added to 2D
paintings.

1. INTRODUCTION
Many outstanding medieval images were manually copied
hundreds of years later for purposes of reproduction. Copy-
ing in some cases worked by placing a thin, semi-opaque
sheet of paper on the surface of the original, and sketching
the contours. Slight modifications between the images can be
observed. From the side of art history several questions arise
from this fact: Are these transformations regular by their
nature due to technical characteristics of the reproduction
procedure or are they focused on specific regions or details
due to the interpretation of the original by the artists or their
patrons? Are we able to reconstruct the reproduction process
based on these modifications? Can we observe some pattern
that could lead to conclusions about the cultural context in
which these images were reproduced? Based on the compar-
ison of deformations between images from the 14th century
and their 18th century manual reproductions we reconstruct
and visualize the temporal order of the drawing process. The
idea is based on the observation that parts of an image that
were drawn at the same time (e.g. a contour) or in close
succession (e.g. the eyes and head) should exhibit similar
or identical transformations, whereas parts that significantly
feature different transformations were either deliberately al-
tered later on or geometrically errors accumulated during
the drawing process, and therefore indicate that they were
not drawn in close succession. We present an iterative algo-
rithm that automatically decomposes the complex nonlinear
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transformation between both images into piecewise linear
functions. By designing a measure that reflects the temporal
order we address the challenge of art history to reconstruct

Fig. 1. Temporal ordering of the drawing process obtained by our
algorithm. The ordering is encoded in the z-coordinate (right). The
left column shows the ordering in color (blue comes first, red last).

the order of the drawing process. This problem is to the best
of our knowledge, a novel problem that has not yet been ap-
proached. We present conceptual results on images coming
from the Codex Manesse ([1]) illustrated between c. 1305
and c. 1340 in Zürich and their reproductions commissioned
by Bodmer/Breitinger in 1746/1747 ([2]). The algorithm
presented in this paper assists art historians in systematically
detecting and quantifying visual transformations. Thus it
amends and enhances the partial comparisons provided by
traditional methods [3] and provides deeper insight into the
reception history of the Codex Manesse, which is an outstand-
ing source for a central topic of Medieval Studies in recent
years: the visual interpretation of the Middle Ages in early
modern and modern times [4]. Beyond that, the algorithm
enhances research on several kinds of transmission processes
in the visual arts [5]. As a final result, the approach provides
the art historically most likely reconstruction of a drawing
process, which was completed centuries ago .
Being a new problem setting in the literature, the work in



computer vision that comes closest is that on sparse mo-
tion segmentation. [6, 7] present a method for decomposing
videos into similarly moving layers. The scene is firstly
divided into a regular grid and an affine transformation is
calculated for each block. Both methods estimate affine mo-
tion models for segments on a regular grid. Due to clutter
and missing contours, accurate estimation of small and con-
tinuous deviations in transformations be estimated with this
approach. Other state-of-the-art approaches [8, 9] need multi-
ple frames to correctly separate the different motions present
in the sequence. Finally GPCA [10] is a known general alge-
braic method that can also be used for segmenting subspace
arrangements of motions.

2. APPROACH
Our goal is to localize and quantify the transformations be-
tween the medieval image and its modern reproduction and
herewith model the temporal order in which images were
reproduced. As a first step, we need to find point correspon-
dences between pairs of images. We observe that calculating
the optical flow between both images and clustering the
resulting vector fields [6, 10] features only insufficient ac-
curacy: localization along the contours is ambiguous (cf.
aperture problem) since contours have been distorted (e.g.
stretched), junctions are partly missing, and textures along-
side the contours have not been reproduced. Moreover, con-
tours in original and reproduction have feature significant
variation of thickness which yields additional ambiguity. For
this reason, art historians have provided us with landmark
correspondences. We then propose an algorithm for esti-
mating how the various image regions where transformed
between original and reproduction. Finding the subtle dif-
ferences in these transformations is a challenging task not
only because the differences are comparable small but also
because contour points are mostly collinear. In section 2.3 we
then analyze the relations between different transformations
and find a projection which models the temporal ordering.

2.1. Calculation of affine transformations
Let A be an original image and B be a reproduced version of
the original. XA := {xA

i }ni=1 are landmark points in image
A and XB := {xB

i }ni=1 are the corresponding points in B
(given in homogeneous coordinates). The transformation

T (ϑ1
i ) :=

 σx
i cosαi −σy

i sinαi txi

σx
i sinαi σy

i cosαi tyi

0 0 1

 (1)

then describes the deformation each point xA
i underwent dur-

ing reproduction onto xB
i . Obviously this transformation ma-

trix cannot be computed locally (cf. [11]) using Levenberg-
Marquard algorithm but it requires an extended neighborhood
ϑ1

i ⊂ XA of point xA
i . Obtaining a neighborhood of con-

tour points that are not collinear is a challenging problem.
Art historical analysis of the corpus has indicated that stretch-
ing, rotation, and translation are the transformations to be ex-
pected and so we can restrict (1) to the corresponding five

free parameters. For the iterative algorithm that follows, the
neighborhood ϑ1

i is initialized to contain xA
i and its 10 near-

est neighbors (10 is twice the number of degrees of free-
dom). The neighbors are those points xA

j ∈ XA with min-
imal distance dC(xA

i , x
A
j ), where dC is a contour-based dis-

tance measure between landmark points (explained in next
section). The choice of the neighborhood is crucial. Given
a small neighborhood, the robustness of the transformation
T (ϑ1

i ) suffers since fewer points render the parameter estima-
tion susceptible to noise, and small rotations and scalings can-
not robustly be measured locally. Large neighborhoods, how-
ever, average over many, potentially unrelated points and thus
do not allow to identify local variation in the transformation,
i.e., due to local deformations. To overcome this problem we
propose an iterative procedure, which updates the neighbor-
hood set and the transformation iteratively. Let T 1

i := T (ϑ1
i )

be the initial transformation calculated according to (1). Then
we can compute the set of points xA

j in the image that are con-
sistent with this transformation (T (ϑ1

i ) maps xA
j to xB

j with
an error equal or less than ε).

Ck
i :=

j | 1
|ϑk

j |
∑

s:xA
s ∈ϑk

j

∥∥T k
i x

A
s − xB

s

∥∥
2
≤ ε

 (2)

The iterative procedure starts with k = 1. Since errors ac-
cumulated continuously during reproduction, we cannot as-
sume perfectly matching groups and thus we allow an er-
ror of ε. Setting it to be the 5-th percentile over the error
‖T (ϑ1

i )xA
r − xB

r ‖ of all xA
r ∈ X 1

A yields a good trade-off be-
tween exactness of the transformation and the capacity to effi-
ciently refine the transformation during the iteration process.
Thereafter we calculate for each j ∈ Ck

i the transformation
T (ϑk

i ∪ ϑ1
j ) with the points ϑk

i ∪ ϑ1
j , i.e., we grow the group

ϑk
i with the local neighborhood of point j. Let

Ek
ij :=

∣∣∣{s | ∥∥T (ϑk
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j )xA
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s
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2
≤ ε, xA

s ∈ X k
A
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(3)

represent the number of points that are consistent with T (ϑk
i ∪

ϑ1
j ), here we setX 1

A := XA. The refined transformation in the
next iteration is updated using

ϑk+1
i := ϑk

i ∪ ϑargmax
j

Ek
ij

(4)

T k+1
i = T (ϑk+1

i ) (5)
X k+1

A := X k
A \ ϑk+1

i . (6)

This iterative update of transformations proceeds until Ck+1
i

is empty, meaning that no additional points in the image are
consistent with the transformation. The result of the algo-
rithm are transformations Ti := T k

i for each point xA
i that are

globally consistent with other related parts in the image. It
is important to realize that in our algorithm each point can be
considered in the calculation of more than one transformation.
2.2. Contour distance between Points
In the last section affine transformations were calculated us-
ing the contour measure dC(xA

i , x
A
j ). In this section we de-



Fig. 2. a) 14th century original image. b) 18th century manual reproduction. c) Transformation using a single affine transformation.

scribe its construction. We recapitulate that the only infor-
mation available is the landmark positions and their corre-
spondences. No additional neighborhood information among
the points is provided. A trivial approach would be to define
dC(xA

i , x
A
j ) as the euclidean distance between points. In do-

ing so, points belonging to different structures (like hair and
eyes) can be closer than points on the same contour. This does
not reflect the true nature of the continuous drawing process:
contours are normally drawn as part of one painting stroke
and therefore points on the same contour should be closer to
another. To model this concept of neighborhood we construct
a graph G = (V, E) by solving the Traveling Salesman Prob-
lem (TSP) using the pairwise distance matrix:

M(i, j) :=
{
‖xA

i − xA
j ‖2 : ‖xA

i − xA
j ‖2 < δ

∞ : else
, (7)

where δ is a user-given constant. The edges E indicate how
landmark points in image A are connected to each other. Al-
though the TSP is NP-hard, approximate solutions can be
found in practice in a feasible time. Here we use the algo-
rithm described in [12].
Given the neighborhood graph G, the distance dC between
points xA

i and xB
j , i < j is then defined as:

dC(xA
i , x

A
j ) := f(p), (8)

where f(p) :=
∑

i ‖xA
i+1 − xA

i ‖2 and p := (xA
i , · · · , xA

j ) is
the shortest path connecting xA

i , x
A
j obtained by the TSP.

2.3. Temporal Ordering
We aim at reconstructing and visualizing the temporal order in
which the reproduction of images were drawn. This problem
can equivalently be formulated as the visualization of how
different parts in an image are related according to how they
were transformed during the drawing process. This equiva-
lence, as stated in the introduction, is based on the observation
that parts of an image that were sketched at the same time or
in close succession should exhibit similar or identical trans-
formation. One way of measuring the dissimilarity between
transformations Ti, Tj corresponding to the points xA

i , x
A
j is

to measure the average distortion that is made if Tj is applied
to map point xA

i instead of using its corresponding transfor-

mation Ti:

dT (xA
i , x

A
j ) :=

1
2
(
‖Tjx

A
i − Tix

A
i ‖+ ‖Tjx

A
j − Tix

A
j ‖
)
(9)

Since disconnected parts that are far away from another (e.g.
eyes and feet) are not likely to have been reproduced consec-
utively, we additionally need to take into account the contour
distance dC(xA

i , x
A
j ) (sect. 2.1) between points. Thus we ob-

tain the distance measure
∆ij = β−1

1 dT (xA
i , x

A
j ) + λβ−1

2 dC(xA
i , x

A
j ), (10)

where β1 = maxij dT (xA
i , x

A
j ) and β2 = maxij dC(xA

i , x
A
j )

(λ = 0.3 has been determined experimentally and is kept con-
stant in all our experiments). ∆ij measures the dissimilarity
between contour points and thus indicates how close the re-
production of point j followed that of i. One natural way to
encode the temporal ordering for all points xA

i is to add a third
dimension zi to the locations xA

i . The z-coordinate, which
represents the temporal ordering, is obtained by projecting
∆ij using a distance preserving embedding in 1D space of
the zi. By applying multidimensional scaling [13] on (10) we
obtain a solution for the zi by solving

(z1, z2, ...) = argmin
z1,z2,···

∑
i<j

(‖zi − zj‖ −∆ij)2 .

Fig. 3. Inconsistency between parts. A single affine transformation
is insufficient to model the distortion of the complete figure, since in-
dividual parts have been transformed differently by the artist. Each
transformation is calculated using our alg. and ϑ1

i being the red seg-
ment.

3. EXPERIMENTAL FINDINGS
Due to its importance, we analyze images from the Codex
Manesse ([1]), illustrated between c. 1305 and c. 1340. Re-
productions of these images, commissioned in 1746/47 (by
J.J. Bodmer and J.J. Breitinger), are registered against the
originals. Our analysis reveals significant distortions in the



Fig. 4. (a) Transforma-
tion of an image using the
piecewise affine transfor-
mations computed with
our algorithm. (b) Aver-
age of σy

i for different im-
age regions shows that the
torso is stretched.

reproductions. Different regions of an image feature different
transformations as can be seen from Fig. 2 and 3 where a
single transformation does not suffice to bring original and
reproduction into correspondence. Only if the shape is de-
composed into several affine transformations we achieve a
consistent registration (we use ∼ 500 points for each shape).
An example of this is shown in Fig 4 (a) where both im-
ages are brought into alignment by means of piecewise affine
transformations. We then average the scaling in y-direction,
σy

i , from (1) in each of three regions. This analysis shows
that the proportions of particular parts of objects were delib-
erately modified. Fig. 4 (b) visualizes one example, where
the torso was stretched in length by 5.5% compared to head
and feet. Such a remarkable finding confirms the art historical
hypothesis that proportions of human figures were altered to
reflect the change of aesthetic preferences.
In Fig. 1 we show the reconstruction of the temporal ordering
of the drawing process. It can be observed that areas with the
most complex visual structures (e.g. facial features, drapery,
hands) were drawn in close succession, whereas the connec-
tions between such details exhibit continuous variations over
time. A deeper art historical analysis would however exceed
the length restriction of this paper.
We note, that a hierarchical clustering of the temporal di-
mension (z-coordinate) of the landmark points would be
equivalent to finding groups of similar affine transformations.
Fig 5 (c) - (f) shows some examples of the resulting groupings
(using Ward’s method). A decomposition into semantically
meaningful groups (e.g. head, hands, feet, helmet) is conform
to the manner in which the traditional reproduction process
worked [5]. This corroborates our method and provide us
with deeper insights about the images.
Since motion segmentation algorithms group image regions
based on local distortions, we also compare our grouping
with the approaches [10, 6] in Fig 5 (a) and (b) (we use the
same number of clusters for comparison and due to space re-
strictions limit ourselves to show one example). The groups
from [10, 6] are clearly deficient since the subtle differences
in transformations can only be measured based on an accurate
neighborhood assignment, as the one proposed in Sect. 2.1.

4. CONCLUSION
Based on the novel comparison of deformations between
images from the 14th century and their 18th century man-
ual reproductions we have presented a method that allows

Fig. 5. (a)-(b) Motion segmentation between images using [6] and
[10]. (c)-(f) Groupings of timeline using our method. (Best viewed
in color)

us to reconstruct and visualize the temporal order in which
reproductions where sketched. For this, we presented an al-
gorithm that discovers local neighborhoods of related points,
accurately estimates their transformations, and projects their
similarities onto a temporal ordering. We investigated our
method on images coming from the Codex Manesse, dis-
covering new insights about the image reproduction process.
Our approach clearly outperforms the grouping strategy from
[6, 10]. Moreover, our method supports art historians in
their analysis of image reproductions. The approach has, for
instance, enabled a quantitative investigation of how local
object proportions were altered by artists to meet the fashion
of their time.
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