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Abstract. Whereas one part of art history is a history of inventions,
the other part is a history of transfer, of variations and copies. Art his-
tory wants to understand the differences between these, in order to learn
about artistic choices and stylistic variations. In this paper we develop
a method that can detect variations between artworks and their repro-
ductions, in particular deformations in shape. Specifically, we present a
novel algorithm which automatically finds regions which share the same
transformation between original and its reproduction. We do this by
minimizing an energy function which measures the distortion between
local transformations of the shape. Thereby, the grouping and registra-
tion problem are addressed jointly and model complexity is obtained
using a stability analysis. Moreover, our method allows art historians
to evaluate the exactness of a copy by identifying which contours where
considered relevant to copy. The proposed shape-based approach thus
helps to investigate art through the art of reproduction.

1 Introduction

Computer vision and art history share the interest in similarity and shape. Cul-
tural heritage consists not only of unique artworks but also of related reproduc-
tions. Art history wants to understand the differences between them in order
to learn about artistic choices and stylistic variations. At the latest since Erwin
Panoramas book [1] about the Renascences, we know how productive the inspi-
ration of ancient art is. Works like the Apollo Belvedere or the Laocoön group
inspired artists in the whole early modern period. But even accurate copies are
labeled with stylistic signs of their present. To discover these differences, com-
puter vision methods can be very helpful to bring new insights into the problem.
Furthermore, European Art of the Middle Ages and early modern period is
mainly reproduced in black and white prints or monochrome drawings which
are also used to prepare paintings, sculptures, architecture or tapestries. Thus,
color and appearance often only have brief occurrence on the timeline of an idea
and its transformations. Therefore it seems justifiable to concentrate on shape
when analyzing the reproduction processes.
Shape is also of enormous importance in computer vision as it is a key char-
acteristic of objects and, as such, an important characteristic when detecting
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or matching objects. Finding related structures, grouping affiliated fragments
of shape, and characterizing the deformation of their Gestalt are therefore key
problems in machine vision ([2]). Thus, shape analysis is a field, where art his-
tory and computer science can benefit from each other. Specifically, we develop a
method which detects variations between artworks and their reproductions, while
detecting groups that have been modified similarly and estimating their deforma-
tion. Consequently, we need to tackle two interrelated problems jointly: grouping
regions of a scene that have been modified similarly and finding the transforma-
tions for those regions. These problems are addressed together by minimizing
an energy function which measures the distortion between local transformations
of the shape. The model complexity, i.e. the optimal number of groups is auto-
matically determined based on a stability analysis of the scene transformation.
Moreover, our method allows art historians to evaluate the exactness of a copy
by identifying which contours where considered relevant to reproduce.
Subsequently, we discuss our approach in particular on several prominent re-
productions based on hand drawings: the self-copying of the Ludwig Henfflins
workshop in a medieval manuscript (Story of Sigenot,University of Heidelberg,
cpg 67); reproductions of the Codex Manesse (University of Heidelberg, cpg 848),
and lithographies of Johann Anton Ramboux after traced Italian paintings.

2 Related Work

In [3] the authors analyze the temporal drawing process of how an image is re-
produced, assuming that parts drawn in closed succession in the reproduction
exhibit similar transformations between them. Contrary to our approach, the
authors of [3] needed to manually locate and match landmark points, since they
did not provide an automatic contour extraction and matching procedure. The
second limitation is the application of two different clustering algorithms. The
first one groups points along the shape in order to estimate parameters of local
affine transformations and assumes perfect correspondences between shapes. In
a second step they apply a hierarchical clustering algorithm to further group
points which share similar transformations. To find regions with similar affine
transformations we formulate a single optimization problem, where affine trans-
formations are estimated and points are grouped within the same procedure.
In the field of sparse motion segmentation, [4] presented a method for decompos-
ing videos into similarly moving layers. The scene is firstly divided into a regular
grid and an affine transformation is calculated for each block. This method es-
timates affine motion models for segments on a regular grid. Due to clutter
and missing contours, accurate estimation of small and continuous deviations in
transformations can not be estimated with this approach. In a similar way, [5]
embed each shape in a lattice consisting of several connected squares and register
them by estimating a rigid transformation for every square. Since the registra-
tion is only on the level of rigid squares, a grouping into flexibly shaped regions
with related modifications is not part of this contribution. Furthermore, [5] is
not able to handle deformations which do not preserve local rigidity (e.g s scaling
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or shear) and it requires a significant overlap between shapes for registration.
Additionally, in our setting, background clutter creates distractors that need to
be handled, whereas the method of [5] is only applied to cartoons without any
clutter. Whereas [6] tries to ensure consistent perspective in art images, [7] is
concerned with images that feature convex mirrors and presents an algorithm
for dewarping image reflections on those mirrors.

3 Approach

Our algorithm automatically detects subtle variations between unique artworks
and their reproductions that can even elude trained eyes, especially when de-
tailed scenes or large quantities of image material are to be judged. The goal is
not to supplant, but to enhance connoisseurship. For this we need to bring both
images into correspondence and reason about the morphological deformation
and alteration between both. Due to deliberate alterations or due to geometri-
cal errors accumulated during the drawing process, different parts in an image
are transformed differently. A typical example for a deliberate alteration is the
movement of an articulated part between the original and its reproduction. The
second class of deformations is more subtle and is related to the drawing pro-
cess. Copying in many cases worked by placing a thin, tracing paper on top of
the original, and sketching the contours. Movements of the semi-opaque sheet
by the artist induced slight modifications in the reproduction. Whereas parts
which were reproduced at the same time share the same transformation, sheet
movements induced a different transformation for the rest of the reproduction.
For both types of deformation we model the complex overall distortion during
reproduction by finding the different image parts which share similar transforma-
tions and then applying this transformation to the corresponding image regions.
Our algorithm is fully automatic and it finds the regions in the original image
which similarly transform between both images and simultaneously obtains the
different local transformations. Moreover, the approach allows us to measure
the similarity between transformations giving us a deeper understanding of the
present modifications.
Finally, using our model we are able to infer which contours were considered
relevant by the artist (see Sec. 3.3) for the reproduction of the image. This ca-
pability is an important step in the process of learning about specific choices of
an artist or a specific art school for the reproduction of images.

3.1 Bringing images into correspondence

For a long time there has been a predominant emphasis on contours and shape
in European Art since the Middle Ages and early modern period. An exam-
ple is Johann Anton Ramboux (1790-1860) who was part of the the Nazarenes
movement. This German group of artists admired medieval art up to Raphael
especially works where a strict line drawing outplays colors and textures. Con-
tours he traced from original images were assumptions for the position of the
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Fig. 1. Cartoon sequence. (a) 1st (blue) and 4th (red) frame. (b) Groups found by our
algorithm of Sec. 3.2. (c) TPS interpolation with artefacts enclosed in a circle (e) Our
piecewise affine transformation using the found groups.

shapes in the original painting.
Similarly, contours have played an important role in the analysis of shape,
growth, deformation and movement within computer science ([2]). The under-
lying idea for the development of many state-of-the-art analysis tools has been
the observation that shape communicates itself through contours. To describe a
shape we extract the underlying contours and then locate a discrete number of
landmark points, on the contours of the object. We then match both point-sets
and use a piecewise affine transformation model to transform all contours (and
not only the landmark-points) present in the image.
Contour extraction. Depending on the drawing technique, different methods
for contour extraction need to be used. For contour-based shape drawings we
have to deal with different contour thickness and texture. Hence, we first extract
the contours by convolving the image with different Laplace of Gaussian (LoG)
Filters of varying sigmas (σ = 0.8+ j ∗0.4, j = 1, . . . , 9) and then take the max-
imal response over all sigmas for every pixel. This kind of filter is suitable since
it allows to obtain a single response for lines of varying thickness and ensure
in praxis a good contrast between ridge response and background. Finally, non-
maximum suppression followed by hysteresis thresholding is applied to obtain a
single binary response. Landmark points for a shape representation are then uni-
formly sampled along the contours. For the second kind of images, where shape
is encoded through texture and color boundaries we use the Pb code ([8]) for
edge extraction, which weight the edge signal proportionally to their strength.
By setting a high threshold on the output, we discard most of the noise in the
edge signal at the cost of loosing relevant shape details. In Sec. 3.3 we describe
how to separate shape information from noise, using a replica of the image.
A point set representing a shape in the original image is referred to with Y :=
{yi ∈ R3×1}ni and with X := {xi}mi in the reproduction. Both point-sets are
given in homogeneous coordinates.

3.2 Finding groups of transformations

In this section we assume to have the correspondence between X and Y (de-
scribed in the next Sec.) and we solve our main task: to find those groups in
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Fig. 2. (a)(b) Ludwig Henfflins workshop, Story of Sigenot, cpg. 67 (c) Distances be-
tween transformations w.r.t the red circle (d) 12 groups of deformation (e) Stability
analysis to automatically select the number of groups.

the image which share the same transformation at the same time that the trans-
formations are estimated. These groups correspond to image regions which are
reproduced similarly by the artist. Each of these groups is modeled through an
affine transformation capable of transforming the group from the reproduction
into the original painting. Hence, the problem consists in estimating a binary
data assignment matrix M ∈ Bn×k of n points to k groups at the same time as
we calculate different affine transformations T ν ∈ R3×3 (ν = 1, . . . , k) for each
group. For the matrix M we have miν = 1 only if point xi is assigned to group ν.
At the same time, T ν registers all points for which miν = 1. Finding M and T ν is
difficult since both terms are mutually dependent. On the one side, we need the
assignment matrix M in order to calculate T ν . On the other side we need T ν to
infer the points xi belong to the group ν. We observe that calculating the optical
flow and clustering the resulting vector fields features only insufficient accuracy:
contours have been distorted (e.g. stretched), junctions are partly missing and
textures alongside the contours have not been reproduced.
To find both, M and the affine transformations T ν , we first calculate local affine
transformations Ti. These transformations are different from T ν . While the for-
mer are calculated using only a small neighborhood around each landmark point
(12 non-collinear points) and are kept fix, the latter transformations of groups
T ν correspond to the deformations present in the reproduction process and are
optimized together with M . We then define an energy function E(M,T ν), which
we minimize using coordinate descent and deterministic annealing. The overall
energy function we seek to optimize is:

min
M,T ν

E(M,T ν) = min
M,T ν

1

2

k∑
ν=1

n∑
i=1

n∑
j=1

MiνMjν

pν
aij +

k∑
ν=1

n∑
i=1

Miνriν (1)

s.t.

k∑
ν=1

Miν = 1 (∀i = 1, · · · , n), Miν ∈ {0, 1} (2)

aij :=
1

Z
(‖Tjxi − Tixi‖+ ‖Tjxj − Tixj‖) (3)

riν :=
1

Zi

(
λ2||T νxi − yi||22 + (1− λ2)||Tixi − T νxi||22

)
, (4)

where Zi :=
∑k
ν=1 riν , Z := max aij and pν :=

∑N
i=1Miν/n are normaliza-

tion constants and aij measures the pairwise distortion between local transfor-
mations Ti and Tj ; riν describes the cost of assigning point i to group ν and
consists of two weighted terms. The first one measures how well a point xi can
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be registered against yi and the second term forces the local transformation Ti
(corresponding to point xi) to be similar to the group transformation T ν . We
use λ2 = 0.8 to control the tradeoff between both terms. Finally, in (1), pν nor-
malizes clusters by their size. In our case, we allow points to belong to a single
group. Thus, we additionally obtain the constraint

∑k
ν=1Miν = 1. We first de-

scribe how to iteratively update the matrix M . The basic idea is to relax it to be
a continuous valued matrix M̂ in the interval of [0 1] and introduce a M logM
entropy barrier function, which allows fuzzy, partial assignments of data points
to groups in the matrix M̂ . This term is controlled by a temperature parameter
β. For β → 0 we obtain a minimum of the discrete energy E(M,T ν). The relaxed
energy function Ê(M̂, T ν ;β) is defined as follows

min
M̂,T ν

Ê(M̂, T ν ;β) :=
1

2

k∑
ν=1

n∑
i=1

n∑
j=1

M̂iνM̂jν

pν
aij +

k∑
ν=1

n∑
i=1

M̂iνriν (5)

+β

k∑
ν=1

n∑
i=1

M̂iν

(
log M̂iν − 1

)
(6)

s.t.

k∑
ν=1

M̂iν = 1 (∀i = 1, · · · , n), M̂iν ∈ {0, 1} (7)

As described in [9], the minima of E(M,T ν) and E(M̂, T ν ;β) all coincide in
the limit β → 0 if the matrix (aij) is negative definite. This can be obtained
by adding a sufficiently large term to its diagonal without altering the structure
of the minima of E(M,T ν). The linear constraints are imposed by adding a
Lagrange multiplier term obtaining the Lagrange function

L(M̂, µ) :=
1

2

k∑
ν=1

n∑
i=1

n∑
j=1

M̂iνM̂jν

pν
aij +

k∑
ν=1

n∑
i=1

M̂iνriν (8)

+β

k∑
ν=1

n∑
i=1

M̂iν

(
log M̂iν − 1

)
+

n∑
i=1

µi

(
k∑
µ=1

M̂iν − 1

)
(9)

The Lagrangian function is a sum of a convex function Evex(M̂) = β
∑
νi M̂iν log M̂iν

and a concave part Ecave(M̂) = (1/2)
∑
νij

M̂iνM̂jν

pν
aij +

∑
νi M̂iνriν . Using this

fact, we can use the CCCP algorithm ([10]), which guarantees the minimization
of the energy using the following update rule

β
(

1 + log M̂ t+1
iν

)
= −1

2

∑
j

M̂ t
jν

aij
pν
− riν . (10)

After setting to zero the derivative of (8) with respect to µi. We substitute it
into equation (10) and solve for M̂ t+1

iν and obtain

M̂ t+1
iν =

exp
(
β
(
− 1

2

∑
j M̂

t
jν
aij
pν
− riν − 1

))
∑
ν exp

(
β
(
− 1

2

∑
j M̂

t
jν
aij
pν
− riν

)) (11)
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Fig. 3. (a) Johann Anton Ramboux reproduction of (c) Pietro Perugino, Assumption of
the Virgin with four Saints, 1500 (b) Noise-free contours of the Ramboux reproduction
(a) using LoG filters (d) Binary Pb edge-signal of the Perugino (e) Relevant contours
of the painting that match to contours of the reproduction. Hence, noisy edges of (d)
are suppressed

After each update step (11), we recalculate the affine transformations using the
Levenberg-Marquardt algorithm:

T ν = arg min
T∗

=

N∑
i

M̂ t+1
iν

(
λ2||T ∗xi − yi||2 + (1− λ2)||Tixi − T ∗xi||22

)
(12)

To initialize the matrix M̂0 we run a fuzzy c-means algorithm using the Euclidean
distance between points xi ([11]) and M̂0 are the resulting fuzzy assignments. We
use fuzzy c-means since it naturally provides us with probability assignments,
which we require at a high temperature. Although a global minimum cannot be
guaranteed, we observed good results using this optimization.
Stability Analysis. We estimate model complexity (i.e., the optimal number
of clusters) using a stability analysis. For a number of clusters k, we randomly
sample a subset of the points in X and run our algorithm bmax times on this
subset, obtaining Cb clustering results. We first measure the distance between
two clustering results using the minimal matching distance ([12]) d(C,C

′
) =

minπ
1
N

∑N
i=1 1[C(i)6=π(C′ (i))], where the minimum is taken over all permutations

π of the k labels. The stability for a given k is then defined as the normalized

mean stab(k) := 1
Z(k)

(
1− 1

b2max

∑
b,b′ d(Cb, Cb′ )

)
. In our experiments we have

observed that the normalization Z(k) = 1+exp(−(k−8)) favorably compensates
the bias of stability analysis towards few clusters.
Correspondence between landmark points. To obtain correspondences be-
tween X and Y we automatically match both sets using [13]. This algorithm
alternates between the calculation of correspondences and a non-parametric reg-
ularized displacement field between both point sets. This transformation model
is defined only on the discrete set of points and it cannot be extended for the
rest of the contours in the image. Hence, we require to use our piecewise affine
transformation model for registration of the entire scene.
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3.3 Discovering relevant strokes

Using an example (Fig. 3 (c) a detail of Pietro Perugino (c. 1445/1450-1523),
the Assumption of the Virgin with four Saints) we describe now a method of
how to discover which details are considered relevant by an artist during the
reproduction. In (a) we have the contour-based reproduction from Ramboux.
Which details of the painting are being reproduced? and which of them are
neglected? We are interested in determining which contours in the painting are
copied. Figure 3 (d) shows the unthresholded Pb edge-output of the Perugino.
A very low signal-to-noise ratio on the output is very common on these kind of
images. Our method suppresses the noise in order to obtain the contours in the
painting which are also present in the reproduction. For this, we calculate the
distance transform image of the registered Ramboux and then multiply the noisy
edge map of the original image with this distance transform. This is equivalent
to weight each edge pixel in the painting (including the noise) with the distance
to the nearest Ramboux edge signal. Thus, the pixels which are also present in
the Ramboux obtain a high score, whereas edge pixels resulting from noise are
downweighted. In Figure 3 (e) we retain only the contours of the painting which
have been distorted less than 3 pixels in the Ramboux (after correcting for the
overall affine transformation).

4 Results

Synthetic data. A hand drawn cartoon sequence is used. It consists of 20
frames and illustrates a running horse with some kids on the back. Fig. 1 (a)
shows the drawing of frames 1 in blue and 4 in red color. Several deformations
between frames occur. Our algorithm correctly finds the parts in the image and
manifests our perception of the articulated movement (Fig. 1 (b), different colors
indicate different groups). Each group is associated with an affine transforma-
tion. Additionally, given the correspondences between frame 1 and 4, we applied
a Thin Plate Spline (TPS) to register both frames (c). Using different weights
for the regularization term we always observed transformation artefacts with
the TPS (enclosed in a circle), and significant distortions to the structure of the
image, which is undesirable for art comparison. In (d) we see that our piecewise
transformation model alliviates this problem.
Ancient Reproductions. In contrast to our other examples where the repro-
ductions were made hundreds of years after the creation of the original, the
illuminator in Ludwig Henfflins workshop in c. 1470 loosely traced copies from
scenes he had previously drawn himself. The Story of Sigenot (cpg. 67) shows
very similar images. Like in a flip-book, the draftsman changes only parts of the
illustration. This efficient method got possible with the substitution of parch-
ment by a more transparent paper.
In Fig. 2 and Fig. 4 (b) we evaluate the performance of our algorithm on two
examples of cpg. 67. The fourth thumbnail presents the groups found (using
4K landmarks for the whole scene) by our algorithm. We correctly recover the
most relevant changes in the image (e.g. arm and feet movements). The third
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Fig. 4. (a) Wolfram von Eschenbach, Codex Manesse and Franz Hegi (1809/10) repro-
duction (b) Story of Sigenot, University of Heidelberg, cpg. 67

thumbnail shows the dissimilarity between the different transformations (mea-
sured w.r.t. the group with a red circle). Here, || log(T i)− log(T j)||F is used to
measure the distance between affine transformations. The analysis of these trans-
formations reveals details about the copying process. Like in a normal drawing
process, we see semantically relevant groups: the head, face, torso and extremi-
ties. Contrary to this, we show an example in Fig. 4 (a), which requires a very
high number of groups (41) for registration and features high differences between
transformations. This shows that the reproduction from Franz Hegi was sketched
freehand after the Codex Manesse as opposed to Henfflin’s workshop.
Further comparisons against [3], which we cannot include due to space restric-
tions, also showed comparable groupings although our approach is fully auto-
matic and does not require manual placement and registration of points.
Stability Analysis. We use 60% of the points in X for subsampling and set
bmax = 10 (sec. 3.2). In Fig. 2 (e) we plot the stability of our algorithm as a
function of the number of clusters. In this case, we see that maximal stability is
obtained for 12 groups (c). Choosing less groups would result in a poor registra-
tion, whereas increasing the number, would result in clusters sensible to noise.
Discovering relevant strokes. In section 3.3 we described a method for discov-
ering which contours were relevant for an image reproduction and Fig. 5 shows
further experiments on different reproductions. In (a) we register the reproduc-
tion (white contours) to the original painting. (b) shows the binary edge-signal
and (c) presents the weighting of (b) using our method described in Sec. 3.3.
Using our method we see how close Ramboux kept to the original. This has a
further value for reconstructing the shape of originals that are partically lost.
Furthermore, this method provide art historians with precise detail information
about the style and attitude of the Nazarenes.

5 Conclusion

The analysis shows that related artworks, especially originals and their pre- or
reproduced line drawings help to find contours in complex paintings. The com-
parison indicates that even the tracing process, which seems to be a relatively
precise method, shows different transformations. They result from the moving
and reattached tracing paper and further alterations. The grouping of the defor-
mations reveals details about the process of copying. Like in a normal drawing
process, the task is divided in different sections: the head, face, torso and ex-
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a b c a b

c

Fig. 5. (a) Registration of painting detail with Ramboux contour-based reproduction
(black lines). (b) noisy edge-signal [9] of original painting (black lines) (c) registration-
based weighting of edge-signals from (b) (Sec. 3.3).

tremities.Whereas the medieval illuminations provide very few, clear contours,
J. A. Ramboux sometimes had to decide whether to treat a line as a contour or
neglect it.
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