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Abstract

Object detection in cluttered, natural scenes has a high
complexity since many local observations compete for ob-
ject hypotheses. Voting methods provide an efficient solu-
tion to this problem. When Hough voting is extended to lo-
cation and scale, votes naturally become lines through scale
space due to the local scale-location-ambiguity. In contrast
to this, current voting methods stick to the location-only set-
ting and cast point votes, which require local estimates of
scale. Rather than searching for object hypotheses in the
Hough accumulator, we propose a weighted, pairwise clus-
tering of voting lines to obtain globally consistent hypothe-
ses directly. In essence, we propose a hierarchical approach
that is based on a sparse representation of object boundary
shape. Clustering of voting lines (CVL) condenses the in-
formation from these edge points in few, globally consistent
candidate hypotheses. A final verification stage concludes
by refining the candidates. Experiments on the ETHZ shape
dataset show that clustering voting lines significantly im-
proves state-of-the-art Hough voting techniques.

1. Introduction
Category-level object detection in cluttered natural

scenes requires matching object models to the observations
in the scene. The two leading approaches to this prob-
lem are sliding windows, e.g. [34, 9], and voting meth-
ods, which are based on the Hough transform [19]. Slid-
ing windows scan over possible locations and scales, eval-
uate a binary classifier, and use post-processing such as
non-max suppression to detect objects. The computational
burden of this procedure is daunting although various tech-
niques have been proposed to deal with the complexity is-
sue, e.g. cascaded evaluation [34], interest point filtering, or
branch-and-bound [21]. In contrast to this, Hough voting
[19] parametrizes the object hypothesis (e.g. the location of
the object center) and lets each local part vote for a point
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Figure 1. Voting in scale space with scale-location-ambiguity. The
circle indicates the spatial support of a local feature. Based on the
descriptor, the difference of object scale between a) and b) is not
detectable. Thus, a local feature casts votes for the object center on
all scales, c). These votes lie on a line through scale space, since
the position of the center relative to a feature varies with object
scale as expressed in Eq. 7. Without noise, all voting lines from
an object intersect in a single point in scale space, d). For all other
scales this point is blurred as indicated by the dotted outline.

in hypothesis space. Since it was first invented [19], the
Hough transform has been generalized to arbitrary shapes
[1], used for instance registration [25], and employed for
category recognition [23, 15, 30, 31].

Although various techniques for local estimation of scale
have been proposed in earlier years (e.g. [25, 20]), the latest
high performance recognition systems do not rely much on
local scale estimates and rather sample features densely on
a large range of scales [4, 10]. It is interesting that so many
approaches use SIFT features computed at multiple scales,
when the SI in SIFT stands for scale invariance!

We believe that inherently object scale is a global prop-
erty, which makes local scale estimates unreliable and, thus,
leads to a scale-location-ambiguity illustrated in Fig. 1.
When the Hough transform is extended to provide hypothe-
ses for location and scale, each local feature casts votes
that form lines through scale space rather than just a sin-
gle point as in current voting methods [24, 30, 14, 15], see
Fig. 1. Since all points on a voting line are statistically de-
pendent, they should agree on a single object hypothesis
rather than being treated as independent votes. In this set-
ting, finding consistent object hypotheses naturally leads to
a formulation as a pairwise clustering of voting lines. Clus-
tering avoids a local search through hypothesis space [23]
and the pairwise setting circumvents having to specify the



Figure 2. Outline of the processing pipeline

number of objects ahead of time. Moreover, clustering vot-
ing lines deals with the large number of false positives [17]
which point votes produce and that hamper the commonly
used local search heuristics such as binning [24].

Our Approach
Let us now briefly summarize the relevant processing

steps for recognition, Fig. 2. To detect objects in a novel
image, a probabilistic edge map is computed (we use [26]).
Edge pixels are then uniformly sampled and represented us-
ing local features from a single scale (we utilize geometric
blur [3]). Each descriptor is mapped onto similar features
from training images which vote for an object hypothesis in
scale space, i.e. object location and scale.

Without local scale estimates, each point in a query im-
age casts votes for object hypotheses that form lines through
scale space. Ideally, all points on an object would yield
lines that intersect in a single point. Due to intra-category
variation, and background clutter, the points of intersection
are, however, degraded into scattered clouds. Finding these
clusters becomes difficult since their number is unknown (it
is the number of objects in the scene) and because the as-
signment of votes to objects is not provided (segmentation
problem). To address these issues we frame the search for
globally consistent object hypotheses as a weighted, pair-
wise clustering of local votes without scale estimates.

To find globally consistent hypotheses all the voting lines
are grouped using weighted agglomerative clustering. The
resulting clusters constitute the candidate hypotheses (on
the order of ten per image). Centered at these candidate
locations, object descriptors (multi-scale grid of histograms
of gradients [22]) are computed and classified using a SVM.

The classification probabilities are then used to obtain the
final ranking of the hypotheses. Ultimately, a verification
stage concludes the approach by evaluating object descrip-
tors in the local neighborhood of the candidate hypotheses
to take account of the uncertainty in each of the clusters.

In Sect. 4 we show experimental results on the challeng-
ing ETHZ shape dataset, which features large variations in
scale. The evaluation demonstrates that we are able to de-
tect objects with a scale variation of roughly 2.5 octaves
although our features come from only a single scale. This
is a significant advantage over approaches such as sliding
windows [9], that require a dense sampling of scales with
step widths as low as a 1/5 octave.

To deal with the large amount of information in a scene,
we follow a hierarchical approach. In successive stages,
the number of entities significantly decreases (from pixels
over curves to hypotheses), while individual entities are be-
coming more global, i.e. they capture information that is
backed up by an increasing number of image pixels. Start-
ing with 105 – 106 image pixels, boundary contours are de-
tected which consist of 103 – 104 points. From the bound-
ary contours points are sampled to produce 102 voting lines.
Clustering then yields on the order of 10 hypotheses per
image and the verification stage finally selects the correct
hypotheses. Thus, our approach reduces the set of candi-
date hypotheses by several orders of magnitude more than
search strategies such as branch-and-bound [21]. For same
sized images, [21] gives an upper bound of 20,000 hypothe-
ses that remain after branch-and-bound compared to the 20
hypotheses our approach has to check.

2. Voting Approaches to Recognition
A wide range of object models have been proposed to

represent objects based on local measurements in an im-
age. These models differ in the amount and complexity of
(spatial) relationships they establish between the local mea-
surements. These range from bag-of-features approaches
[8] and latent topic models [32] without spatial constraints,
to more involved spatial models such as star graph shaped
models [23, 30], k-fans [7], compositional models [28, 29],
and latent scene models [33]. Rich spatial relationships
have been represented by joint models of all parts such as
constellation models [12], pictorial structures [11], shape
matching [2] and by regular grid like models that act as
comparably rigid templates of objects [22, 9]. We focus on
voting approaches since they are effective in dealing with
the complexity of object models.

We sample semi-local features [3] uniformly along the
contours. Based on some local relatedness measure, these
local observations could be grouped as proposed by Fer-
rari et al. [14, 15]. Such a bottom-up approach is, how-
ever, susceptible to produce groupings that are globally
inconsistent—at least when extended groupings are formed,



e.g. points might be grouped along an object contour that
passes into a shadow contour in the background. Therefore,
we follow a clustering approach that considers all local ob-
servations jointly and we explicitly model their individual
uncertainty w.r.t. object scale. That way, we avoid having
to make local decisions concerning groupings or scale.

2.1. Probabilistic Hough Voting

Probabilistic, part-based models (e.g. [12, 24]) combine
potentially large numbers of local features in a single model
by establishing statistical dependencies between the parts
and the object hypothesis, e.g. by modeling the probabili-
ties for relative location of parts to the object center. Leibe
et al. [23] propose a Hough voting scheme to obtain can-
didates for object hypotheses. The Hough accumulatorHha

approximates a probability distribution p(c,x, σ) over scale
space—here c denotes the category of an object hypothe-
sis and x, σ are its location and scale in scale space. Local
parts, which are represented by feature vectors fj ∈ RN
and detected at image location lj ∈ R2 and scale σj ∈ R,
are assumed to be independent,

Hha(c,x, σ) ∝
∑
j

p
(
x, σ

∣∣c, fj , lj , σj) p(c∣∣fj , lj , σj). (1)

Let Ci denote the i-th training sample or the i-th codebook
vector, depending on whether a nearest-neighbor approach
[4] or vector quantizion is used. Moreover, Ci has a shift
si ∈ R2 from the object center in the respective training
image. All training images are assumed to be scale nor-
malized, i.e. they have been rescaled so that objects are the
same size. Now we can marginalize over Ci and si to obtain

Hha(c,x, σ) ∝
∑
j,i

p
(
x, σ

∣∣c, Ci, si, fj , lj , σj)
× P

(
c
∣∣Ci, si, fj , lj , σj)p(Ci, si|fj , lj , σj)(2)

=
∑
j,i

p
(
x, σ

∣∣c, si, lj , σj) P (c∣∣Ci) p(Ci|fj) (3)

=
∑
j,i

p
(
x− lj − σjsi, σ − σj

∣∣c) P (c∣∣Ci) p(Ci|fj) (4)

The main assumption in this derivation is that only relative
shifts of local parts from the object center are informative,
not the absolute positions on their own.

2.2. Finding Candidate Hypotheses is Problematic

The main problem with Hha is that we are interested
in maximizers of a complex, continuous function that is
highly non-concave. Furthermore, this continuous function
in the infinite scale space has to be obtained by interpola-
tion based on a comparably small set of points—the votes.
Let K denote the kernel function, b(σ) is the adaptive ker-
nel bandwidth, Vb(σ) is a scale-dependent normalization,

and d : R3 × R3 7→ R denotes a distance function in scale
space. Then (4) can be approximated using the balloon den-
sity estimator [6] to obtain

Hha(c,x, σ) ≈ 1
Vb(σ)

∑
j,i

K

d
[
(x, σ)>; (lj + σjsi, σj)>

]
b(σ)


× P

(
c
∣∣Ci) p(Ci|fj) . (5)

After this interpolation the second problem concerns find-
ing candidate hypotheses Sc for category c,

Sc :=
{
(x1, σ1)>, (x2, σ2)>, . . .

}
. (6)

The common approach is to thresholdHha(c,x, σ) and find
its local maxima. Due to the complexity of this objective
function (many local maxima), exact optimization is com-
putationally intractable. Therefore, [24] presents a heuristic
approach that discretizes scale space and searches over a
discrete grid of bins. Thresholding of Hha(c,x, σ) discards
irrelevant bins and a successive refinement procedure local-
izes the hypotheses more accurately within the bins.

2.3. Characteristics of Our Approach

We present an alternative voting approach that directly
obtains candidate hypotheses. The standard approach,
which we have summarized above, takes discrete votes,
interpolates to obtain a function over a continuous space,
discretizes this space, and searches for local maxima. Our
approach takes the voting lines and clusters them in scale
space to directly obtain candidate hypotheses. We differ
from Hough voting techniques such as [23] and the more
recent max-margin version [27] in the following aspects
(see App. A for a detailed comparison):

1. Scale estimation based on complete object hypothe-
ses instead of ill-posed local scale estimation or search
over scales. As a consequence, votes are straight lines
in scale space instead of points. Uncertainty is over-
come by finding concerted, global hypotheses based
on all votes rather than based on local estimates.

2. Accurate “voting lines” are used directly instead of
blurring “vote points” with adaptive kernels.

3. Direct clustering of voting lines (global optimization)
instead of search for local maxima and thresholding in
vote space.

Moreover, we match local features using approximate near-
est neighbors rather than using vector quantization.

3. Vote Clustering with Global Scale Estima-
tion

3.1. Voting Lines

The scale of objects in images is a global property which
renders local scale estimation notoriously brittle. Only by



combining all the local observations in an image we can
expect to obtain robust scale estimates. The uncertainty in
scale σj of local features fj affects the voting procedure:
rather than voting for points in scale space, each local fea-
ture now votes for a line through scale space.

Let faj be a local feature at location laj in a query image
that is mapped to a similar feature Cai from the training set.
An efficient method for finding these related features are
approximate nearest neighbor techniques [4]. A match is
then represented by the vector a = (ai, aj)> ∈ N2 and
we refer to it as the voting line a or simply just as a vote.
Moreover, Cai has a shift sai ∈ R2 from the object center in
the respective training image. As illustrated in Fig. 1 c), the
votes for the object center (x, σ)> are lines through scale
space, parametrized by the unknown object scale σ,(

x
σ

)
=
(
laj

0

)
︸ ︷︷ ︸
=blaj

+σ
(
sai

1

)
︸ ︷︷ ︸
=bsai

. (7)

3.2. Candidate Hypotheses by Clustering Voting
Lines

Rather than discretizing and searching through the con-
tinuous voting space, the following presents an approach
that directly retrieves object hypotheses. Ideally, all the vot-
ing lines (7) intersect in a single point in scale space for
each object as illustrated in Fig. 1 d). However, due to
intra-class variations these points of intersection are rather
blurred point clouds and mismatches and votes from the
background yield considerable, additional clutter. An ad-
ditional problem arises since the number of objects is un-
known. All these challenges motivate a pairwise cluster-
ing approach [18]. In contrast to central clustering which
requires the number of centroids to be given, the pairwise
setting requires only a threshold on the distance between
different prototypes. This threshold is directly accessible:
To evaluate whether the bounding box Bhyp defined by the
hypothesis (x, σ)> for category c is correct we use the stan-
dard PASCAL VOC [10] criterion. This requires that the
intersection of a predicted hypothesis with the ground truth
is greater than half the union of both

bounding box Bhyp correct⇔ A(Bhyp ∩ Bgt)
A(Bhyp ∪ Bgt)

>
1
2
. (8)

Obviously, multiple matches onto the same ground truth ob-
ject also count as mismatches. Therefore, the threshold for
pairwise clustering is given by the minimal overlap between
hypotheses as specified in the PASCAL criterion (8). Oth-
erwise multiple, strongly overlapping hypotheses would be
produced, which would lead to additional false positives.

Let us now define the cost function for our setting of
weighted pairwise clustering. The goal is to compute as-
signments Maν of votes a (specified by (7)) to one of K

hypotheses (xν , σν)>. The matrix M ∈ {0, 1}N×K cap-
tures many-to-one assignments, i.e.,

∑
ν Maν = 1. Let

Dab denote the distance in scale space between two votes
and wac is the weight given to vote a when the object is
from class c. The goal is then to find assignments M that
minimize the cost function

Hpc(c,M) :=
∑
ν

∑
a

Maνwac

∑
bMbνDab∑
bMbν

. (9)

The underlying rationale is that the fraction to the right
computes the average dissimilarity between votes a and hy-
potheses ν. Hpc sums these individual contributions up.
A classical way for obtaining approximate solutions to this
cost function is hierarchical, agglomerative clustering [18].
Therefore, we use a weighted version of Ward’s Method:
Given Dab and wac, Ward computes Maν by grouping
votes using a minimum variance approach. The weightswac
are the same as in (4),

wac := P
(
c
∣∣Cai

)
p
(
Cai
|faj

)
. (10)

The discrete probability distribution to the left is estimated
using a discriminative approach, i.e. an SVM with proba-
bilistic output (LibSvm [5] with rbf-kernel). The second
distribution captures how far a matched training sample Cai

is from the observed feature faj
. The Gibbs distribution

represents this distance in terms of a probability

p
(
Cai
|faj

)
=

exp
(
−‖faj − Cai‖

)∑
ai

exp
(
−‖faj

− Cai
‖
) . (11)

3.3. Distances between Voting Lines

For two votes a and b, there exists one point in scale
space (an object hypothesis) that is most consistent with
both.1 This is the point that is closest to both lines and σ
denotes its scale. The distance between the two votes a and
b is the distance between their voting lines,

Dab :=
∣∣∣∣〈 ŝai× ŝbi

‖ŝai
× ŝbi

‖
, l̂aj
− l̂bj

〉∣∣∣∣ · 1
σ

(12)

This distance is normalized with the scale σ of the predicted
object hypothesis, since large distances on coarser scales
correspond to smaller distances on finer scales. The scale
σ = σa+σb

2 of the point that is closest to both votes is

(σa, σb) = argmin
σa,σb

∥∥∥̂laj + σa ŝai − l̂bj − σb ŝbi

∥∥∥ (13)

⇔ σa ŝai
− σb ŝbi

= l̂bj
− l̂aj

−
〈

ŝai
× ŝbi

‖ŝai× ŝbi‖
, l̂bj
− l̂aj

〉
ŝai
× ŝbi

‖ŝai× ŝbi‖
(14)

Given the three equations in (14) with two unknowns, a
closed form solution can be computed analytically—we
skip it here merely for the length of this formula.

1In the special case of two parallel voting lines, consistent hypotheses
form a line parallel to these voting lines rather than a single point.



3.4. From Clusters to Object Hypotheses

Agglomerative clustering yields an assignment matrix
Maν as a solution to the weighted, pairwise clustering prob-
lem of (9). Given the assignments, the object hypothe-
sis that corresponds to each cluster can be computed as a
weighted average of all the assigned votes,(

xν

σν

)
=
∑
a

Maνwac∑
aMaνwac

(̂
laj

+ σaŝai

)
. (15)

Rather than computing local scale estimates and searching
over scales, all voting lines directly vote for a concerted hy-
pothesis of object scale. App. A concludes this presentation
by comparing our algorithm with Hough voting.

3.5. Ranking Candidate Hypotheses

After clustering voting lines, the resulting object hy-
potheses have to be ranked. We investigate two ranking
schemes.
A) Ranking using Weights wac: The score ζMw

ν for clus-
ter ν is the weighted sum over the weights of all voting lines
which are assigned to cluster ν,

ζMw
ν :=

∑
a

Maνwac

∑
bMbνDab∑
bMbν

. (16)

B) PMK Ranking: A cluster ν receives a ranking score
ζPMK
ν by applying a SVM classifier to the corresponding

image window. We use the pyramid match kernel (PMK)
[16, 22] with histograms of oriented gradients as features 2

Positive examples for a class are the groundtruth bounding
boxes which are rescaled to the average bounding box di-
agonal length of the class to assure that all samples are on
the same scale. To obtain negative samples for the SVM,
we run our voting method on the positive training images
and pick the false positive hypotheses. In the spirit of clas-
sifier boosting this approach collects difficult negative sam-
ples and we do not require any negative training images.

3.6. Verification of Candidate Hypotheses

Ideally each cluster would just be a single point in scale
space but intra-class variations and noise lead to scattered
clusters. In the verification stage, the SVM classifier from
Sect. 3.5 is run in sliding window mode over a grid of lo-
cations around each cluster centroid. The grid is obtained
by rotating it according to the principal components of the
vote cloud for the respective cluster. The size of the grid is
two standard deviations in each direction and each direction

2The implementation is as follows: Histograms have 9 orientations.
Image windows are sampled on 4 regular grids of different resolution. Suc-
cessive ones are one octave apart from each other and are weighted with a
scale-dependent factor of 2l−1, where l = 1 is the coarsest scale.

Figure 3. Detection performance
under the PASCAL criterion
(8). On average, line clustering
(yellow and cyan) outperforms
Hough voting (dashed blue) by
9% and 25% at 1 FPPI, for our
two ranking schemes. Com-
pared with [13], our verifica-
tion stage achieves a 26%/22%
higher recall at .3/.4 FPPI. Sim-
ilarly, we observe a 20%/17%
improvement over [15].

is regularly divided into 5 cells. The verification stage re-
fines the candidate hypotheses by performing a local search
around each candidate from the first round.

4. Experimental Evaluation
To evaluate our approach, we choose the challenging

ETHZ Shape Dataset containing five diverse object cate-
gories with 255 images in total. All categories feature sig-
nificant scale changes and intra-class variation. Images con-
tain one or more object instances and have significant back-
ground clutter. We use the latest experimental protocol of
Ferrari et al. [15]: to train our detector on a category, we use
half the positive examples for that class. No negative train-
ing images are used and we test on all remaining images in
the dataset (like [15] we average the results over five ran-
dom splits). The detection performance is measured based
on the rigid PASCAL criterion given in (8).

4.1. Performance of Clustering Voting Lines

Fig. 3 compares our vote clustering approach with the
method of Ferrari et al. [15] by plotting recall against false
positives per image (fppi). It turns out that our line clus-



tering with the PMK ranking procedure from Sect. 3.5 sig-
nificantly outperforms the Hough voting used by [15]. The
average gain is 25% and even the simple method proposed
in Eq. 16 achieves a gain of more than 9%, c.f . Tab. 1. In-
terestingly, our vote clustering alone performs better than
Hough voting together with the verification stage in [15] on
giraffes and bottles. Here, clustering provides hypotheses
that are already comparably accurate and do not require sig-
nificant model refinement by the verification stage. Further-
more, we compare our results to [27] who cast the Hough
voting in a discriminative, maximum-margin setting. Tab.
1 shows that our vote clustering with the PMK ranking
provides an improvement of approximately 18% and even
ranking by a simple summation over all our discriminatively
learned weights yields a gain of 2.1%. These performance
improvements underline the effectiveness of modeling lo-
cal votes as lines and clustering them to provide globally
consistent hypotheses.

4.2. Results of the Combined Detector

Although the main goal of this paper is to improve the
hypothesis generation of voting methods, we also investi-
gate the combined detector consisting of vote clustering and
a verification stage that performs model refinement Fig. 3.
Compared to KAS [13], our approach improves the average
detection rate by 22% to 26% at .4 and .3 fppi, respectively
(Tab. 1). Similarly, we obtain a gain between 17% and 20%
over the full system of [15]. For completeness, Tab. 1 also
gives the results of [27], although they follow a different ex-
perimental protocol: they use twice as many training sam-
ples (positive images and an equal number of negative ones)
and they expand the voting space to also include aspect ra-
tio (this is crucial for the giraffes). Taking these aspects into
account, it is fair to say that our verification stage performs
at least comparable to theirs. Finally, we compare our com-
bined detector to a sliding window detector. Therefore, the
SVM classifier from Sect. 3.6 is run in sliding window mode
over the whole image (step width of 8 pixels) and over all
scales (successive scales differ by a factor of 21/8). This
exhaustive search procedure evaluates on the order of 104

hypotheses per image whereas the vote clustering retrieves
an average number of 20 candidates. Consequently, we ob-
serve a gain in computational speed that is between two and
three orders of magnitude. The central part of voting using
line clustering has negligible running time (on the order of
a second) compared to the other processing steps (comput-
ing geometric blur features etc.). This significant reduction
of computational complexity results in a 1.5% lower recall,
which we believe is tolerable given the significant reduction
of the candidate set.

Figure 4. Comparing our full system, (trained only on bounding
boxes from positive iamges) against the approach of Zhu et al.
(trained on manually drawn shape models). [15, 14] have shown
that training on bounding boxes is significantly harder—they ob-
served a 13% lower recall at .4 FPPI.

4.3. Comparing against a Supervised Approach

All our approach requires are positive training images
where the objects are marked with a bounding box. Let
us now compare this weakly supervised approach with the
contour context selection of Zhu et al. [35] who require a
manually drawn shape model for each category. The exper-
iments by Ferrari et al. [14] show that learning from bound-
ing boxes is a significantly harder problem: they report a
9% lower recall at 0.4 FPPI for the bounding box training
(using positive and negative training images) as opposed to
manually drawn models (76.8% vs. 85.3%). When using
only positive samples [15] as we also do, the gap increases
to 13% (72.0% vs. 85.3%). Fig. 4 compares the preci-
sion/recall of our full approach (line clustering and verifi-
cation stage) against the different methods of [35]. Unfor-
tunately we cannot compare the average precision as we are
lacking the actual values of [35]. However, a visual inspec-
tion of the curves indicates that our method performs better
on apple logos and mugs, but it is outperformed on the other
three categories. Since we are dealing with a significantly
harder task, an improvement on two out of three categories
is noteworthy.



Voting Stage (FPPI = 1.0 FPPI) Verification Stage (FPPI = 0.3 / 0.4)

Category wac rank
Eq. 16

PMK rank
Sect. 3.5

Hough
[15]

M2HT
[27]

Verification
Sect. 3.6

Sliding
Windows

KAS
[13]

Full system
[15]

M2HT+
IKSVM [27]

Apples 80.0 80.0 43.0 85.0 95.0 / 95.0 95.8 / 96.6 50.0 / 60.0 77.7 / 83.2 95.0 / 95.0
Bottles 92.4 89.3 64.4 67.0 89.3 / 89.3 89.3 / 89.3 92.9 / 92.9 79.8 / 81.6 92.9 / 96.4
Giraffes 36.2 80.9 52.2 55.0 70.5 / 75.4 73.9 / 77.3 49.0 / 51.1 39.9 / 44.5 89.6 / 89.6
Mugs 47.5 74.2 45.1 55.0 87.3 / 90.3 91.0 / 91.8 67.8 / 77.4 75.1 / 80.0 93.6 / 96.7
Swans 58.8 68.6 62.0 42.5 94.1 / 94.1 94.8 / 95.7 47.1 / 52.4 63.2 / 70.5 88.2 / 88.2

Average 63.0 78.6 53.3 60.9 87.2 / 88.8 88.9 / 90.1 61.4 / 66.8 67.2 / 72.0 91.9 / 93.2
Table 1. Comparing the performance of various methods. Detection rates (in [%]) are measured using the PASCAL criterion (8). The
approach of [27] is not directly comparable, since they are using twice the amount of training samples we use (additionally to the positive
samples an equally sized subset of negative images). Our clustering of voting lines (using PMK ranking) yields a 25% higher performance
than the Hough voting in [15] and a 18% gain over max-margin Hough voting [27].

Figure 5. Relevance of bound-
ary points. The highest ranked
object hypothesis ν̂ is shown as
green bounding box. For each
sampled edge point the score
Maν̂wac of the corresponding
voting line is shown.

4.4. Relevance of Boundary Points

Our approach infers candidate hypotheses by establish-
ing a sparse object representation based on voting lines at
subsampled edge points. Fig. 5 shows the sample points and
plots the highest ranked bounding box hypothesis. After
clustering the voting lines, each voting line assigned to this
hypothesis ν̂ receives a positive weight Maν̂wac. We plot
this score for all the sample points. Interestingly, nearly all
of the background points are suppressed since their voting
lines are clustered into other candidate hypotheses. Sim-
ilarly, the reflection of the swan on the water is also dis-
carded because it is inconsistent with the predicted hypoth-
esis. Moreover, we obtain a lot of high votes on the object
boundary. However, the bottle image also features strong
responses on the front of the bottle where many training

samples have shown the labeling of the bottle. Our algo-
rithm appears to have learned these regions which are rich
in contours. In conclusion the plots show that our approach
is effective in segregating figure from background.

5. Discussion and Conclusion

We have presented a simple yet effective approach for
combining large quantities of local object votes into glob-
ally consistent object hypotheses. The basis for this method
is to explicitly model the scale-location-ambiguity of local
image observations leading to voting lines through scale
space. To estimate object location and scale jointly based
on all the uncertain local votes, we have proposed a pair-
wise clustering of voting lines. The approach condenses
a large number of local votes into a few relevant hypothe-
ses, thereby reducing the number of candidates by three or-
ders of magnitude compared to the leading sliding window
paradigm. The line clustering procedure has shown a signif-
icant performance gain over existing Hough voting methods
for object detection.

A. Hough Voting vs. Clustering Voting Lines

Alg. 1 summarizes the main processing steps of proba-
bilistic Hough voting as described by Leibe et al. in [24].
The approach of clustering voting lines is then presented in
Alg. 2. A comparison of both procedures reveals that Alg. 1
goes a detour by taking a discrete set of votes, interpolating
them in the continuous voting space, and discretizing that
space again to search through it. Alg. 2 clusters the original
votes to obtain the hypotheses directly. Thereby, a search
through the voting space is not needed. Moreover, the pro-
posed approach does not require local scale estimates but
computes object scale based on the correspondence of all
votes.



Algorithm 1 Detecting objects from category c in a query
image using probabilistic Hough voting.

1 Map features fj 7→ Codebook vectors Ci
2 σj ← Local scale estimation at locations lj
3 Vote into Hough accumulator
4 Interpolate votes using Kernel density estimation
5 Threshold votes & discretize voting space into bins
6
{
(xν , σν)>

}
ν
← Search for local maxima

Algorithm 2 Detecting objects from category c in a query
image by clustering voting lines.

1 Map features faj
7→ nearest training samples Cai

2 Dab← Distances between votes (12)
3 Maν ← Agglomerative clustering of Dab to solve (9)
4
{
(xν , σν)>

}
ν
← Apply (15) to Maν
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