
In Proceedings of the 13th International Conference on Computer Vision (ICCV’11), c©2011 IEEE

Video Parsing for Abnormality Detection
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Abstract

Detecting abnormalities in video is a challenging prob-

lem since the class of all irregular objects and behaviors is

infinite and thus no (or by far not enough) abnormal train-

ing samples are available. Consequently, a standard set-

ting is to find abnormalities without actually knowing what

they are because we have not been shown abnormal exam-

ples during training. However, although the training data

does not define what an abnormality looks like, the main

paradigm in this field is to directly search for individual ab-

normal local patches or image regions independent of an-

other.

To address this problem we parse video frames by estab-

lishing a set of hypotheses that jointly explain all the fore-

ground while, at same time, trying to find normal training

samples that explain the hypotheses. Consequently, we can

avoid a direct detection of abnormalities. They are discov-

ered indirectly as those hypotheses which are needed for

covering the foreground without finding an explanation by

normal samples for themselves. We present a probabilistic

model that localizes abnormalities using statistical infer-

ence. On the challenging dataset of [15] it outperforms the

state-of-the-art by 7% to achieve a frame-based abnormal-

ity classification performance of 91% and the localization

performance improves by 32% to 76%.

1. Introduction

Object and behavior recognition in videos of crowded

scenes is one of the primary challenges of computer vision.

The problem becomes even more challenging when unusual

objects or suspicious behaviors are to be detected. Finding

such abnormalities in videos is crucial for applications rang-

ing from automatic quality control to visual surveillance.

However, while detecting normal objects is already difficult

due to a large within-class variability, abnormality detec-

tion poses the additional problem that there exist infinitely

many ways for an object to appear in unusual context (irreg-

ular object instance) or to behave abnormally (unusual ac-

tivity). Thus it is simply impossible to learn a model for ev-

erything that is abnormal or irregular. Consequently, recent

work on abnormality detection [15] has established bench-

mark datasets where the training data contains only normal

visual patterns and a discriminative approach cannot be em-

ployed to directly localize irregularities. So the question is:

how can we find an abnormality, if we do not know what

to search for? Despite this fundamental problem, the main

paradigm to abnormality detection is currently to classify

each local image patch individually, e.g., [4, 26] or to detect

abnormal image regions separately [27]. However, deciding

locally and independently about the abnormality of each in-

dividual image region is an ill-posed problem.

We can avoid this issue by abandoning the standard ap-

proach of object detection which aims at finding each ob-

ject in a scene that is independent of the others. Typi-

cally, abnormality detection is based on videos from a sta-

tionary camera (e.g. surveillance videos) where powerful

background subtraction algorithms [25] can provide fore-

ground/background segregation. We then need to find a set

of normal object hypotheses that together explain all the

foreground pixels. Therefore, object hypotheses have to be

distributed over the scene so that all the foreground is cov-

ered while extending into the background as little as possi-

ble. To solve this problem all hypotheses have to be jointly

placed within the scene and their spatial configuration has

to be determined, i.e., it has to be decided what instance

from the set of positive training samples provides the best

fit. All the object hypotheses which are needed to explain

the foreground but which themselves cannot be explained

by an instance from the set of normal training samples are

then abnormal objects. By parsing the scene and jointly in-

ferring all required object hypotheses we can indirectly dis-

cover objects which must have been present in the scene

without actually knowing what to look for.

To make this problem feasible we follow a two-stage ap-

proach. First, a shortlist of hypotheses is computed that has

a low-false negative and high-false positive rate, i.e. a su-

perset of all hypotheses that might eventually be needed is

computed. Background subtraction rules out all hypotheses

in the background and a discriminative background clas-

sifier is used to retain only those hypotheses that are very



unlikely to be background. Based on the shortlist of candi-

date hypotheses the problem of video parsing and explain-

ing foreground with object hypotheses becomes a discrete

optimization problem. We have to find a subset of the orig-

inal hypotheses that are needed and sufficient for covering

all the foreground. Therefore, the presence of hypotheses

and their correspondence to the exemplars of normal ob-

jects from the training data have to be jointly inferred for all

hypotheses. Correspondences are established between spa-

tiotemporal patterns to capture not just the appearance of

objects but also the change thereof which is caused by the

behavior of objects. Our probabilistic approach not only

labels objects as being irregular but also infers a per-pixel

abnormality probability which allows to segment abnormal

objects from the scene without having seen training data for

them.

The experimental setup that we follow is that of abnor-

mality detection in highly crowded scenes based on the

novel dataset of Mahadevan et al. [15]. The challenging

videos feature walkways crowded by walking pedestrians.

Abnormality is not staged but consists of events that occur

naturally such as unusual objects (e.g. cars on walkways)

or unusual behavior (e.g. people cycling across walkways).

Videos are of low resolution (pedestrians have a height be-

tween 10 and 30 pixels) and objects are heavily overlapping
so that learning models of visual patterns becomes a chal-

lenging problem. Moreover, the training data features only

normal patterns with large within-class variability, whereas

the test set consists of normal and abnormal instances. To

extend the future utility of this benchmark database we have

completed the pixel-wise ground-truth annotation of the test

set which was previously only available for a small subset

of all frames. In the experimental evaluation, our approach

has significantly outperformed all current methods for ab-

normality detection on this dataset.

2. Related work

We mainly focus on the work related to abnormality de-

tection in videos since a comprehensive overview over the

general topics of object recognition, tracking, and action

recognition is beyond the scope of this paper and can be

found in Ommer et al. [18]. The main paradigm for abnor-

mality detection in videos is to extract semi-local features

[14, 21] and to learn a model on the normal samples from

the training data. Abnormality is estimated by measuring

how bad the model fits. The degree of supervision in these

models varies to a great extent. Some of the approaches

[6, 22] are based on a set of constraints that are introduced to

specify the normality, whereas the methods [27, 3, 1, 24] are

unsupervised approaches which directly determine normal

patterns. The approach by Adam et al. [1] can be deemed

local since the attention is directed to individual activities

occurring in a local area. While this approach provides good

results when it comes to implementation and efficiency, its

performance suffers from the incapability of the model to

incorporate temporal aspects of relationships among activ-

ities. Xiang and Gong [26] proposed a method that au-

tomatically recognizes behavior and detects abnormalities

without applying any manual labeling. Zhong et al. [27]

detect objects by thresholding a motion filter and they pro-

pose an unsupervised method that integrates the prototyp-

ical image features and classifies a group of behavior pat-

terns either as normal or abnormal. Kim and Grauman [10]

proposed a method to detect abnormalities in a video se-

quence based on a space-time Markov random field model.

This model dynamically adapts to abnormal activities that

consists of unpredictable variations. Some of the current

methods for the detection of abnormal behavioral patterns

are based on unsupervised one-class learning approaches.

These namely include topic models such as in [24, 8] or

Markov random field models [10]. Other methods utilize

supervised approaches for classifying events and patterns

such as [20, 9]. Mahadevan et al. [15] present a method for

unusual behavioral pattern detection in crowded scenes that

is based on mixtures of dynamic textures. Their approach

also includes jointly performed modeling of the dynamics

and appearance of a scene as well as detection of temporal

abnormalities which are represented as low-probability oc-

currences and unusual spatial activities which are dealt with

using the discriminative saliency property. The provided

dataset contains low-resolution video sequences of crowds

with occlusion.

We propose to parse video frames by jointly inferring

all objects that are needed to explain the foreground that

has been observed. Instead of detecting abnormal image

regions independently as in current approaches, abnormal-

ities are discovered indirectly after establishing a complete

interpretation of the foreground, as a subset of all hypothe-

ses that are necessary and sufficient for explaining all pixels

of the foreground map. A similar problem appears in ob-

ject tracking where the goal is to link object detections into

possible tracks and then find a subset of tracks that provides

a mutually consistent covering. That can be achieved by

solving a constrained optimization problem [19]. Previous

approaches related to scene parsing differ in that a paramet-

ric scene [23, 2] or object model [11, 7] or a non-parametric

exemplar-based representation for objects [13, 16] can be

constructed. In contrast to these methods, we are not pro-

vided any training samples of the abnormalities we are

searching for but we can leverage a foreground/background

segregation.

3. Abnormality Detection by Jointly Explain-

ing All Scene Constituents

Abnormalities cannot be searched for directly, since the

class of abnormalities is infinitely large and so there are no



Figure 1. Initialization of the video parsing method. From left to right are: source frame, foreground probability map, optical flow map and

the set of hypotheses of the shortlist.

(or not enough) training samples available. However, in

case of a stationary camera the foreground/background seg-

regation becomes feasible due to background subtraction.

The foregroundmask renders it then possible to turn the ab-

normality detection problem into a task of video parsing.

The goal is thus to explain all the foreground using object

hypotheses and to explain each hypothesis using a sample

from the set of normal training examples. The underlying

statistical inference problem has to be tackled jointly for all

hypotheses, since hypotheses can explain each other away.

Abnormalities are then those hypotheses that are required

to explain the foreground but which themselves cannot be

explained by normal training samples.

3.1. Initialization

To parse a novel frame in a video, several pieces of infor-

mation have to be gathered. In the first place, background

subtraction is performed. This is possible because we as-

sume the stationary camera model for our videos. Back-

ground subtraction facilitates further processing by ignoring

irrelevant parts of the video. For background subtraction,

we follow [25] and assume that each video frame can be

decomposed into a background image corrupted by sparse

foreground pixels. The matrix of successive video frames

U = [ũt−τ+1 · · · ũt] is thus a sum of a low-rank matrix

B = [b̃t−τ+1 · · · b̃t] that corresponds to the background and
a sparse matrix F = [f̃t−τ+1 · · · f̃t] which corresponds to

the foreground. This decomposition can be achieved effi-

ciently by convex optimization [25]. The foreground label

fj ∈ {0, 1} for each pixel j is selected according to the

foreground probability computed from the raw foreground

pixel value f̃j ,

P (fj = 1) := 1− exp
(
−
‖f̃j‖

σf

)
. (1)

Secondly, the optical flow vectors vj are computed by

the method [12]. Velocity of an object hypothesis i is then
calculated as a weighted average of the optical flow vectors

over the support Si of the hypothesis i

vi =

∑
j∈Si

P (fj = 1) · vj∑
j∈Si

P (fj = 1)
(2)

To initialize the subsequent parsing and abnormality de-

tection, a shortlist of candidate object hypotheses is com-

puted. From a large number of object hypotheses that could

be established in a video frame most hypotheses are not

compatible with the foreground mask as they would be lo-

cated in the background. Nowwe can efficiently evaluate an

appearance based classifier on candidate object hypotheses

in the foreground to obtain a shortlist of relevant hypothe-

ses. Since the training data does not contain abnormal in-

stances but only the background and normal foreground, it

is important to note that this is basically an inverted back-

ground detector, i.e., a discriminative SVM classifier that

is trained to distinguish the background from anything else

that deviates from it. A vector of spatiotemporal deriva-

tives di = [
∂ũj

∂x
,
∂ũj

∂y
,
∂ũj

∂t
]j∈Si

is used as a feature vector in

the SVM classifier. The features capture both the appear-

ance (spatial patterns) and behavior (temporal patterns) in a

video domain that is crucial for good performance in abnor-

mality detection. The SVM classifier uses a linear kernel

and produces a probabilistic output [5] as an estimate of the

probability of the background class P (oi = 0|di). The clas-
sifier is trained in a batch mode on samples from training

videos.

The resulting shortlist of object hypotheses is set to have

a high recall and low precision. This opportunistic pre-

filtering retains a reasonable number of hypotheses (on the

order of 10 to 102) without losing any relevant ones. How-

ever, all of these hypotheses have been found independently

of each other. Therefore, there will be spurious hypotheses

that can be explained away by others. Moreover, abnormal-

ities can only be discovered once the foreground has been

explained by a set of mutually compatible object hypothe-

ses. Abnormal hypotheses are then the ones which cannot

be described by the object model that has been learned dur-

ing training, but which are nevertheless needed to explain

the foreground that cannot be explained by other hypothe-

ses. The initialization stage is illustrated in Fig. 1.

3.2. Model Formulation

Given the initialization, the task of scene parsing is as

follows. Select a subset of the initial set of hypotheses

that explains all the foreground and explain each object hy-



pothesis using the object model (e.g., which training sam-

ples correspond to a particular query hypothesis) that has

been learned during training. The activation/deactivation of

candidate hypotheses and their explanation with the object

model have to be solved jointly for all hypotheses since they

are mutually competing. The main inference process that

parsing is based upon is that of explaining away as we will

see later. Object hypotheses are necessary for explaining

the foreground if they cannot be explained away by others.

If such a necessary hypothesis fits to the object model that

has been learned from the training videos that only contain

normal patterns then this is a normal instance, otherwise we

have found an abnormality. Since the model is inherently

probabilistic a probability of abnormality is provided. The

graphical model of our video parsing approach is shown in

Fig. 2.

Figure 2. Graphical model of the proposed video parsing method

for abnormality detection.

The initialization provides a set of object hypotheses,

where each hypothesis has a location li ∈ R
2, a scale

si ∈ R, an overall appearance descriptor di ∈ D that lives

in feature space D, and a velocity vi ∈ R
2. After the ini-

tialization, all object hypotheses are assumed to be required,

i.e. the indicator variable oi ∈ {0, 1} is initialized as oi = 1.
Our goal is now to find a subset of all hypotheses that is

necessary and sufficient for explaining all pixels of the fore-

ground mask fj ∈ {0, 1}. Moreover, we aim at explaining

each hypothesis based on a normal object sample from the

training data. Thus, for each hypothesis i the best exemplar

mi ∈ M from the training data M is sought (see Fig.3).

For abnormal objects all exemplarswill obviously have high

matching costs. Consequently, the probability that sample

mi is matched to the i-th hypothesis in a query frame de-

pends on how similar they are in appearance, ∆(di, dmi
).

∆ is the distance in the feature spaceD. Moreover, each vi-

sual pattern has a particular probability to occur at a specific

location, e.g. cars are more likely to drive on roads than on

sidewalks, whereas pedestrians are more likely to walk on

sidewalks. The probability that the training sample mi will

be matched to the hypothesis i is given by

P (mi|li, di) ∝ P (mi|li) · P (mi|di) (3)

∝
exp

(
−βl · ‖li − lmi

‖
)

Z(li)
×

exp
(
−βd ·∆(di, dmi

)
)

Z(di)
,

where Z(·) is the partition function. The probability of hy-

pothesis i being an actual object (and not a spurious detec-

tion) depends on the observed properties of the hypothesis

(descriptor di, location li, scale si, and velocity vi) and is

given by

P (oi = 1|di, li, si, vi) ∝ P (oi = 1|di) (4)

× p(li|oi = 1) · p(si|oi = 1, li) · p(vi|oi = 1, li)

Here P (oi|di) is the SVM appearance classifier from Sec.

3.1, while p(li|oi), p(si|oi, li) and p(vi|oi, li), for oi = 1,
are nonparametric models of location, scale and velocity of

normal objects in the image. Otherwise, if oi = 0, location,
scale and velocity have uniform distribution.

Figure 3. A subset of exemplars obtained from the training data.

Finally, we need to estimate the foreground probability

of a pixel j. This probability depends on all hypotheses i
that cover the pixel. Let Si be the support of the ith hypoth-
esis, i.e., the set of all pixels that are covered by it. Then

{i : j ∈ Si} is the set of all hypotheses that contain pixel

j. We assume that the probability the pixel is background,

given all the hypotheses, can be expressed as a product of

probabilities of the pixel being background, given each hy-

pothesis alone. We also account for a possibility that the

pixel is foreground even if all hypotheses claim it is back-

ground. This is modeled by the leak probability p0. The

foreground probability is therefore given by

P (fj = 1|{oi,mi, li, si}i:j∈Si
) (5)

= (1− p0)
[
1− (1 − p0)

∏

i:j∈Si

(
1− P (fj = 1|oi,mi, li, si)

)]

The first factor (1 − p0) allows the pixel to be background

(i.e. P (fj = 0|{oi,mi, li, si}i:j∈Si
) = p0) even if there

is a hypothesis that asserts the pixel is foreground (i.e.

P (fj = 1|oi,mi, li, si) = 1 for some i). The second fac-

tor (1 − p0) allows the pixel to be foreground (i.e. P (fj =
1|{oi,mi, li, si}i:j∈Si

) ≈ p0) even if all hypotheses assert



that the pixel is background (i.e. P (fj = 0|oi,mi, li, si) =
1 for all i).

To obtain the foreground probability of a pixel based

on a training sample mi, the foreground probability map

P (fmi = 1) of the training sample is pasted into the query

frame at the location li. Thus we have to shift and scale it

from the reference frame of the training sample into that of

the current frame and obtain

P (fj = 1|oi,mi, li, si) = oi·1(j ∈ Si)·P (fmi

s
−1

i
(lj−li)

= 1)

(6)

Here 1(·) is the indicator function and if oi = 0 or j /∈ Si

then the hypothesis i does not explain the pixel j.

3.3. Inference by Foreground Parsing

The goal is now to estimate which of the hypotheses

are actually needed to explain the foreground and to find

a matching training sample for each hypothesis. For abnor-

mal hypotheses Eq. 4 will yield low probabilities. If fore-

ground fj = 1 is observed and asserted by the hypothesis i,
and no other hypothesis can be found that could explain the

presence of the foreground at that pixel, then the probabil-

ity of the hypothesis i increases. This statistical inference is
also called explaining away in the literature, since for an ob-

served variable fj different hypotheses i that share the same

pixel j become statistically dependent so that the absence of

one hypothesis can dictate the presence of another.

To infer the unknown variables oi and mi, we have to

find the joint configuration {ôi, m̂i}i that maximizes the

posterior probability

{ôi, m̂i}i = argmax
{oi,mi}i

P ({oi,mi}i|{di, li, si, vi}i, {fj}j)

= argmax
{oi,mi}i

∏

i

(
P (oi|di, li, si, vi) · P (mi|di, li)

)

×
∏

j

P (fj |{oi,mi, li, si}i:j∈Si
) (7)

To solve the given problem we follow an alternating opti-

mization approach. In each iteration we fix the parameters

of all but one hypothesis i and then maximize over its pa-

rameters (oi,mi). Each iteration is actually a search in the

space {0, 1} ×M where the variables (oi,mi) live

argmax
oi,mi

P
(
oi,mi|{di′, li′, si′, vi′}i′, {fj}j , {oi′,mi′}i′6=i

)

= argmax
oi∈{0,1},mi∈M

P (oi|di, li, si, vi) · P (mi|di, li)

×
∏

j∈Si

P (fj |{oi′,mi′, li′, si′}i′:j∈Si′
). (8)

Typically, only a few rounds of iterations are needed to con-

verge to a locally optimal solution.

3.4. Detecting Abnormalities

Finally, the ith hypothesis is an abnormality, ai = 1, if
this hypothesis is necessary to explain the observed fore-

ground, ôi = 1, but it has a low probability according to

Eq. 4 and if no matching training sample can be found, i.e.,

the best estimate m̂i for a matching sample (obtained from

Eq. 7) is unlikely to explain this hypothesis,

P (ai = 1|oi = 1,mi = m̂i) (9)

∝ P (oi 6= 1|di, li, si, vi) · P (mi 6= m̂i|di, li)

Similarly, pixel j is part of an abnormal object, ãj = 1, if
it is in the foreground, fj = 1, and if any of the hypotheses
that extend over this pixel, {i : j ∈ Si}, is abnormal,

P (ãj = 1|fj = 1, {ai}i:j∈Si
) (10)

∝ P (fj = 1) · max
i:j∈Si

P (ai = 1|oi,mi)

4. Experimental Evaluation

We evaluate our approach on the challenging abnormal-

ity datasets Ped1 and Ped2 that have been recently proposed

by Mahadevan et al. [15]. The video sequences feature a

pedestrian walkway acquired by a stationary camera with

low resolution (pedestrians have a height between 10 and

30 pixels). The crowd density varies and there are numer-

ous sequences that are very crowded and with severe occlu-

sions. Abnormalities are not staged but are naturally occur-

ring events such as i) objects that are unusual in the present

surroundings (e.g. cars on walkways) or ii) objects that be-

have irregularly such as people cycling across walkways or

walking over the surrounding grass. Other abnormalities

include skaters, small carts, and wheelchairs. The training

data contains only normal objects and actions, so that no

model for abnormalities can be learned. We concentrate

mainly on the Ped1 dataset as a larger, more difficult one

of the two benchmark sets, which also features some per-

spective distortion and a scale variability of more than one

octave. The standard experimental protocol uses 34 clips

for training and 36 for testing in the Ped1 dataset, and 16
clips for training and 14 for testing in the Ped2 dataset.

There exist two evaluation methodologies: abnormality

detection on a frame level and pixel-accurate detection. In

the first, a frame is labeled as abnormal if it contains one or

more abnormalities. Repeating the detection for multiple

thresholds yields then an ROC curve. In the second exper-

iment abnormality detections are compared to pixel level

ground-truth masks. To obtain an ROC curve, Mahadevan

et al. consider frames as abnormal if at least 40% of all truly

abnormal pixels are detected. A shortcoming of the current

datasets is that pixel-wise ground-truth is only available for

a small number of test sequences. To improve the utility of

the benchmark datasets, we have completed the pixel-wise



 

 

 

 

Figure 4. Columns show detection results on different frames. Row i) our initial shortlist, row ii) hypotheses and abnormality probability

ai, row iii) per-pixel probability ãj , row iv) best fitting model mi, row v) result by [15]. Best viewed in color.

ground-truth annotation for all of the test videos in the Ped1

dataset and will make it publicly available at the address

http://hci.iwr.uni-heidelberg.de/COMPVIS

/research/abnormality.

4.1. Comparing with the StateoftheArt

We compare our approach with the state-of-the-art ab-

normality detection methods on the Ped1 and Ped2 bench-

mark datasets. The methods include the mixture of dynamic

textures [15], the social force model [17], the mixture of op-

tical flow [10], the optical flow monitoring method [1], and

a combination of [17] and [10] that was investigated in [15].

In all of the experiments our approach significantly out-

performs all the other approaches. Our per-frame labeling

on the Ped1 dataset (Fig. 6) achieves an EER of 18%, which

is an improvement of 7% over [15], and an improvement of

22% over [10]. We also compare the area under the ROC

curve (AUC), which is a more robust measure, as it does not

depend on only a single spot on the curve. We achieve an

AUC of 91% compared to 84% of [15]. Per-frame labeling

on the Ped2 dataset (Fig. 7a) yields an EER of 14%, which

is an improvement of 11% over [15], and it also results in an

AUC of 92% compared to 85% of [15]. Nevertheless, our

current MATLAB implementation is approximately twice

as fast in the prediction phase (5-10 secs per frame) as the

currently best performing approach [15].

In order to estimate the abnormality of pixels, we fol-

low a direct probabilistic approach where the variables ãj
are obtained directly by statistical inference. The abnormal-

ity masks are then compared to the pixel-level ground truth

masks as in [15]. Our approach improves the AUC in this

experiment (Fig. 7b) by 32% achieving 76% average per-

formance compared to 44% by the currently best approach

[15]. In that paper, the detection performance at the point of

equal error was also reported where we achieve a 23% gain

yielding a detection rate of 68% compared to 45% by [15].

Note that in the previous experiment [15] have compared

error rates while they are measuring detection rates. This

is why we report the standard and more robust AUC in all

cases. To enhance the future utility of this dataset, Fig. 7c

http://hci.iwr.uni-heidelberg.de/COMPVIS
/research/abnormality


Figure 5. Rows show additional detection results on various frames. Column i) our initial shortlist, column ii) hypotheses and abnormality

probability ai, column iii) per-pixel probability ãj , column iv) best fitting model mi. Best viewed in color.

reports the detection performance of the fully labeled Ped1

test set that we have assembled.
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Video Parsing, AUC = 0.91

MDT, AUC = 0.84

Social Force, AUC = 0.77

Social Force + MPPCA, AUC = 0.77

MPPCA (Kim & Grauman), AUC = 0.67

Adam et al., AUC = 0.65

Figure 6. Per-frame abnormality detection results for the Ped1

dataset. We achieve a 7% gain in AUC over the state-of-the-art.

Fig. 4 compares the abnormality localization of our ap-

proach with that of [15]. The columns show results on

different frames. i) Row one visualizes our initial short-

list with its spurious detections, ii) row two shows the hy-

potheses and their abnormality probability ai (ranging from
blue for normal to red for abnormal) after optimization, iii)

row three displays the pixel-level abnormality ãj , and iv)

row four explains each hypothesis by the best fitting model

mi and for abnormalities all connected abnormal pixels are

grouped. The comparison between our localization of ab-

normalities in row iv) with the currently best performing

approach [15] in row v) further explains the significant per-

formance gain we achieve in Fig. 7b. Further detection

results of our video parsing approach are shown in Fig. 5.

5. Conclusion

To avoid the ill-posed problem of directly detecting ab-

normalities and classifying individual image regions inde-

pendently from another as abnormal, we have proposed

a scene parsing approach. All object hypotheses that are

needed to explain the foreground of a video frame are

jointly inferred. At the same time, each hypothesis seeks

to be explained by a normal training example. In our proba-

bilistic model, sets of hypotheses are jointly explaining the

foreground while they are also able to explain each other

away, simultaneously. Thus we are not detecting hypothe-

ses individually but we find a layout that jointly describes

the scene. Abnormalities are then discovered indirectly as

those hypotheses which are needed to explain the scene but

which themselves cannot be explained by the normal train-

ing samples. Our parsing approach has demonstrated its

potential by significantly improving the state-of-the-art per-

formance on a challenging benchmark dataset.
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Figure 7. a) Per-frame abnormality detection results for the Ped2 dataset. We achieve a 7% gain in AUC over the state-of-the-art. The

orange curve illustrates the performance of our approach after the shortlist initialization (Sec. 3.1), whereas the red curve depicts the

performance after the explaining away procedure (Sec.3.3). b) Pixel-wise abnormality detection for the labeling provided by Mahadevan

et al. We observe a 32% improvement in the AUC. c) Pixel-wise abnormality detection for our fully labeled test set.
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