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Abstract. Hough voting methods efficiently handle the high complexity of multi-
scale, category-level object detection in cluttered scenes. The primary weakness
of this approach is however that mutually dependent local observations are in-
dependently voting for intrinsically global object properties such as object scale.
All the votes are added up to obtain object hypotheses. The assumption is thus
that object hypotheses are a sum of independent part votes. Popular represen-
tation schemes are, however, based on an overlapping sampling of semi-local
image features with large spatial support (e.g. SIFT or geometric blur). Features
are thus mutually dependent and we incorporate these dependences into prob-
abilistic Hough voting by presenting an objective function that combines three
intimately related problems: i) grouping of mutually dependent parts, ii) solving
the correspondence problem conjointly for dependent parts, and iii) finding con-
certed object hypotheses using extended groups rather than based on local obser-
vations alone. Experiments successfully demonstrate that state-of-the-art Hough
voting and even sliding windows are significantly improved by utilizing part de-
pendences and jointly optimizing groups, correspondences, and votes.

1 Introduction

The two leading methods for detecting objects in cluttered scenes are voting approaches
based on the Hough transform [19] and sliding windows (e.g. [33, 12]). In the lat-
ter case, rectangular sub-regions of a query image are extracted at all locations and
scales. A binary classifier is evaluated on each of these windows before applying post-
processing such as non-max suppression to detect objects. The computational complex-
ity of this procedure is critical although techniques such as interest point filtering, cas-
cade schemes [33], or branch-and-bound [20] have been presented to address this issue.
Rather than using a single, global descriptor for objects, Hough voting avoids the com-
plexity issues by letting local parts vote for parametrized object hypotheses, e.g. object
locations and scales. Generalizations of the Hough transform to arbitrary shapes, ex-
emplar recognition [23], and category-level recognition [22, 16, 29, 30, 28, 25, 18] have
successfully demonstrated the potential of this approach, and its wide applicability. De-
spite the current popularity of the method, Hough voting has two significant weaknesses
that limit its performance: i) (semi-)local parts are independently casting their votes for
the object hypothesis and ii) intrinsically global object properties such as object scale
[28] have to be estimated locally. Consequently, current voting approaches to object
detection, e.g. [22, 16, 25, 18], are adding all local votes in a Hough accumulator and
are, thus, assuming that objects are a sum of their parts. This assumption is against the
fundamental conviction of Gestalt theory that the whole object is more than the sum
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Fig. 1. a) Outline of the processing pipeline. b) The three terms of the cost function dT ν from
Eq.(7)

of its parts. And indeed, popular semi-local feature descriptors such as SIFT [23] or
geometric blur [5] have a large spatial support so that different part descriptors in an
image are overlapping and thus mutually dependent. To avoid missing critical image
details, a recent trend has been to even increase sampling density which entails even
more overlap. However, observing the same image region N times does not provide
N independent estimates of the object hypothesis. Models with richer part dependen-
cies (see section 2) such as constellation models [15] or pictorial structures [14] have
been proposed to address these issues, however these methods are limited by their com-
plexity (number of parts and the number of parameters per part). Without grouping,
[5] transform a complete query image onto a training image. Therefore, this method is
constrained to few distractors (e.g. little background clutter) and the presence of only
one object in an image. In [16] Hough voting precedes the complex transformation of
the complete object from [5] to limit the hypothesis space and reduce the influence of
background clutter. However, the voting is limited by assuming independent part votes.

To establish reliable group votes, we incorporate dependencies between parts into
Hough voting [22] by

– grouping mutually dependent parts,
– solving the correspondence problem (matching parts of the query image to model

parts of training images) jointly for all dependent parts, thereby utilizing their in-
formation on each other,

– letting groups of dependent parts vote for concerted object hypotheses that all con-
stituents of the group agree upon,

– integrating grouping, correspondence, and voting into a single objective function
that is jointly optimized, since each subtask is depending on the remaining ones.

Outline of the Approach
Object detection in a novel image (c.f. Fig. 1) starts by first computing a probabilistic

edge map (using [24]). A uniform sampling of edge pixels yields points where local fea-
tures are extracted on a single scale (we use geometric blur features [5]). Each descriptor
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is mapped to similar features from training images. In standard Hough voting, all points
are then independently voting for an object hypothesis in scale space, i.e. object location
and scale, before adding up all these votes in a Hough accumulator. Consequently, de-
pendencies between points are disregarded and for each point, unreliable local estimates
of global object properties such as object scale are required. To correctly model the de-
pendencies between features, we group related points and estimate object hypotheses
jointly for whole groups rather than independently for all of their constituents. This
results in three intimately related problems: i) Grouping mutually dependent points,
ii) letting groups of dependent points vote for a concerted object hypothesis, and iii)
finding correspondences for each point in a group to training samples. We jointly find
a solution to all of these three subtasks by formulating them in a single cost function
and solving it using a single clustering algorithm. That way, all related points influence
each others voting and correspondences and their voting influences their grouping, in
turn. To obtain an initial grouping, we perform pairwise clustering of edge points. The
necessary pairwise affinities are obtained by measuring the cooccurrence of points in
different levels of the hierarchical segmentation of the initial probabilistic edge map
from [24].

2 Voting Methods and Object Detection

Category-level object detection requires models that represent objects based on local
measurements in an image. A broad variety of models with widely differing represen-
tation complexity have been proposed. These range from bag-of-features approaches
[11] and latent topic models without spatial relationships [31] to richer spatial repre-
sentations such as hierarchical models [7, 17, 2], k-fans [10], and latent scene models
[32]. Complex spatial representations have been described by a joint model of all local
parts (constellation model) [15], shape matching [5], pictorial structures [14], and by
rigid template-like models [12, 21]. The compositional nature of our visual world has
been utilized by [27] to build hierarchical object representations.[26] describes a Ten-
sor voting approach to form perceptually meaningful groups which can then be used
for object recognition. The voting paradigm [22, 16, 28, 25, 18], which is central to this
paper, effectively handles the complexity of large-scale part-based models.

2.1 Hough Voting with Independent Parts

Hough voting makes part-based object models with large numbers of parts feasible by
letting all parts independently cast their votes for object hypotheses [22]. All these lo-
cally estimated object hypotheses are summed up in a Hough accumulatorHpnt(c,x, σ)
over scale space. Here, x and σ are the location and scale of an object hypothesis and
c denotes its category. Moreover, a local part detected at location xQi ∈ R2 in a query
image incorporates a feature vector fQi ∈ RN and a local estimate σQi ∈ R of object
scale. The key assumption of Hough voting is that all parts are independently casting
their votes for the object hypothesis so that the overall object hypothesis is indepen-
dently obtained from dependent parts,
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Hpnt(c,x, σ) ∝
∑
i

p
(
x, σ

∣∣c, fQi ,xQi , σQi )p(c∣∣fQi ,xQi , σQi ) (1)

Let fTj denote the j-th codebook vector or the j-th training sample, depending on
whether vector quantization or a nearest neighbor approach is used. Without loss of
generality we can assume that the training object is centered at the origin so that the
location xTj ∈ R2 of fTj is the shift of the feature from the object center. Moreover, all
training images are assumed to be scale normalized, i.e. they are rescaled so that objects
are the same size. Summation over fTj and xTj then yields

Hpnt(c,x, σ) ∝
∑
i,j

p
(
x− [xQi − σ

Q
i xTj ], σ − σQi )× p(c|fTj ) p(fTj |f

Q
i ) (2)

Details of this derivation can be found in [22, 28].

2.2 Key Points of Our Method

Hough voting methods (e.g. [22, 16, 28, 25, 18]) let all parts independently cast their
votes for the object hypothesis, thereby neglecting part dependence. In contrast to this,
our approach models the dependencies between parts by establishing groups and letting
all parts in a group jointly find a concerted object hypothesis. In detail, we are differing
from voting methods to detection in the following ways:
Grouping of Dependent Parts: Rather than considering all parts to provide indepen-
dent votes (e.g. [22, 16, 28, 25, 18]), we segment a scene into groups of mutually depen-
dent parts. Thus multiple strongly related features (e.g. due to overlapping descriptors)
are not considered as providing independent information.
Joint Voting of Groups of Dependent Parts: Mutually dependent parts in a group as-
sist each other in finding compatible correspondences and votes, rather than estimating
these independently as in standard Hough voting. Thus groups yield votes with signif-
icantly less uncertainty than the individual part votes (c.f. Fig. 5). Intrinsically global
parameters such as object scale are then obtained by global optimization rather than
by local estimates (such as local scale estimation in [22, 8]). [28] could only model the
uncertainty of each local part. Based on a grouping of parts, we can however obtain
reliable estimates .
Joint Optimization of Grouping, Voting, and Correspondences: Identifying and
grouping dependent parts, computing joint votes for complete groups, and solving the
part correspondence problem are mutually dependent problems of object detection. We
tackle them jointly by iteratively optimizing a single objective function. Rather than
letting each of these factors influence the others, [8] finds groups before using them
to optimize correspondences in a model where parts are grouped with their k nearest
neighbors. Estrada et al. [13] pursue the simpler problem of exemplar matching by only
dealing with grouping and matching consecutively. Several extensions have been pro-
posed to the standard Hough voting scheme, but the critical grouping of dependent parts
has not been integrated into voting in any of those approaches. [29] extend the Implicit
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Shape Model by using curve fragments as parts that cast votes. Without incorporating a
grouping stage into their voting, parts are still independently casting their votes. Amit
et al. [3] propose a system limited to triplet groupings. In contrast to such rigid group-
ings, our approach combines flexible numbers of parts based on their vote consistency
and geometrical distortion. In contrast to hierarchical grouping approaches, where later
groupings build on earlier ones, our method does not require any greedy decisions that
would prematurely commit to groupings in earlier stages but rather optimizes all group-
ings at the same time.
Linear Number of Consistency Constraints: In contrast to Berg et al. [5] who need a
quadratic number of consistency constraints between all pairs of parts, grouping reduces
this to a linear number of constraints between parts and the group they belong to, see
section 3.
Flexible Model vs. Rigid Template: Template-like descriptors such as HoG [12] or
[21] have a rigid spatial layout that assumes objects to be box-shaped and non-articulated.
Moreover, they require a computationally daunting search through hypothesis space al-
though approximations such as branch-and-bound [20] have been proposed to deal with
this issue. On the other end of the modeling spectrum are flexible parts-and-structure
models [15, 14]. However, the modeling of part dependencies in [15] becomes pro-
hibitive for anything but very small number of points and [14] restrict the dependencies
to a single, manually selected reference part. In contrast to this, we incorporate de-
pendencies in the powerful yet very efficient Hough voting framework. Moreover, we
do not rely on pixel accurate labeling of foreground regions as in [22] but only uti-
lize bounding box annotations. In contrast to [16, 5] who transform a query image onto
training images using a complex, nonlinear transformation we decompose the object
and the background into groups and transform these onto the training samples using
individual, linear transformations. That way, unrelated regions do not interfere in a sin-
gle, complex transformation and regions of related parts can be described by simpler
and thus more robust, linear models.

3 Grouping, Voting, and Correspondences

Hough voting approaches to object detection let all local parts independently vote for a
conjoint object hypothesis. However, there are direct mutual dependencies between fea-
tures, e.g. due to their large spatial support and since interest point detection has a bias
towards related regions in background clutter [6]. Thus, multiple related features yield
dependent votes rather than independent evidence on the object. Rather than adding up
all those duplicates as is common practice in Hough voting approaches (eg. [22, 16,
25, 28]), a group of mutually dependent parts should actually jointly vote for a con-
certed object hypothesis. That way, the correspondence problem of matching features
in a novel query image to features in training samples is jointly solved for a group of
dependent parts.

3.1 Joint Objective Function for Grouping, Voting, and Correspondences

To solve the grouping, voting, and correspondence problem jointly, we have to i) match
query features onto related training features, ii) find correspondences with low geomet-
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rical distortion, and iii) minimize the overall scatter of all votes within a group. Let us
now investigate each of these aspects in detail. Hough voting solves the correspondence
problem by matching the i-th part of a query image, fQi , to the training part or training
codebook vector fTj that is most similar, i.e. for which

δ1(i, j) =
∥∥∥fQi − fTj ∥∥∥

2
(3)

is minimal. Boiman et al. [6] have demonstrated the deficiencies of quantization and
codebook based representations. Therefore, we adopt a nearest neighbor approach,
where query features are mapped onto training features rather than mapping them onto
a quantized codebook. Let Cij ∈ {0, 1} denote a matching of the i-th query part to
the j-th training part, where Cij captures many-to-one-matchings,

∑
j Cij = 1. As

discussed above, the correspondence problem has to be solved jointly for all mutually
dependent parts, i.e. all related parts should undergo the same transformation T ν when
being matched to the training samples, xQi

!= T νxTj . This implies that related parts i
and i′ are clustered into the same group ν by computing assignments Miν of parts to
groups, Miν ∈ {0, 1} ,

∑
ν Miν = 1.

Due to the relatedness of points in a group, transformations should be forced to be
simple, eg. similarity transformations

T ν =

σνx cos(θ) −σνy sin(θ) tνx
σνx sin(θ) σνy cos(θ) tνy

0 0 1

 (4)

In effect, we are decomposing heterogeneous objects into groups of dependent parts
so that piecewise linear transformations (one for each group) are sufficient rather than
using a complex nonlinear transformation for the whole scene as in [5, 16]. Let Gν :=
{i : Miν = 1} denote all parts in a group ν and |Gν | =

∑
iMiν denote the number

of parts in the group. Then we have to find a transformation T ν that minimizes the
distortion

δ2T ν (i, j) =
∥∥∥xQi − T νxTj ∥∥∥

2
(5)

for each part in the group.
(5) is penalizing the distortions of correspondences to yield minimal group distor-

tion. The consistency of group votes is obtained by measuring the deviation of indi-
vidual votes from the average vote of the group. Minimal group distortion does not
necessarily guarantee consistent group votes. Hence we introduce a term that penalizes
the scatter of the group vote.

δ3T ν (i, j) =
∥∥∥xQi − T νxTj − (tνx, t

ν
y , 1)T

∥∥∥2

2
(6)

(6) is measuring the agreement of all parts in the group with respect to their object
center estimate (summing over all parts i in a group yields the variance of the group
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vote). This consistency constraint has a linear complexity in the number of image fea-
tures in contrast to Berg et al. [5] who proposed pairwise consistency constraints with
a quadratic complexity. This reduction in complexity is possible since dependent parts
are combined in groups, so we can penalize the scatter of the entire group. Without
the grouping, Berg et al. have to penalize the distortions of all pairs of parts under the
transformation.

Joint Cost Function
Groupings Miν of query parts, correspondences Cij between query parts and training

parts, and group transformations T ν are mutually dependent. Thus we have to combine
them in a single cost function

dT ν (i, j) = λ1δ
1(i, j) + λ2δ

2
T ν (i, j) + λ3δ

3
T ν (i, j) (7)

that is jointly optimized for each of these unknowns. The weights λ1, λ2, λ3 are adjusted
by measuring the distribution of each distance term δ(.) in the training data. The weights
are then set to standardize the dynamic range of each term to the same range. The cost
for matching all the query parts i which belong to group ν to the corresponding training
parts j = C(i) is given by

R(Gν) =
1
|Gν |

∑
i

Miν

∑
j

Cij dT ν (i, j) (8)

3.2 Joint Optimization of Groups, Votes, and Correspondences

To find optimal groups, object votes, and correspondences, we need to minimize the
overall cost of all groups

∑
ν R(Gν). We seek optimal group assignments M∗, corre-

spondences C∗, and transformations T ∗ that minimize the summation of costs over all
the groups,

(M∗,C∗, T ∗) = argmin
M,C,T

∑
ν

R(Gν) . (9)

Since parts in a group are mutually dependent, each of these parameters depends on
the other two. Therefore we incorporate an alternating optimization scheme. To find the
optimal corresponding training part j = C(i) for query part i we have to minimize

C(i) = argmin
j

dT ν (i, j) . (10)

So for each i, we select the training part j with minimal cost. Optimal groupings are
obtained by finding assignments ν = Miν(i) for each part i,

Miν(i) = argmin
ν

dT ν (i,C(i)) = argmin
ν

[
λ2δ

2
T ν (i,C(i)) + λ3δ

3
T ν (i,C(i))

]
. (11)
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Thus for each i, the group ν with minimal distortion is chosen. Finally, the transforma-
tion of each group from the query image onto the training images has to be estimated

T ν = argmin
T

∑
i

Miν

∑
j

Cij ·
[
λ2δ

2
T ν (i,C(i)) + λ3δ

3
T ν (i,C(i))

]
. (12)

Optimal T ν in (12) is obtained by Levenberg-Marquardt minimization. These three op-
timization steps are alternated until convergence. In our experiments, the optimization
in Alg. 1 has usually converged after two or three iterations. We initialize ν by the out-
put of a bottom-up grouping that is outlined in section 3.4. Initialization of Cij for each
query part i is obtained by a nearest neighbour search for j using the distance function
δ1(i, j). T ν is initialized with the transformation that aligns the centroid of group ν
onto the centroid of the corresponding training parts.

3.3 Hough Voting with Groups

After finding optimal groupings, group transformations, and correspondences, the votes
from all groups have to be combined. In standard Hough voting, the votes of all parts
are summed up, thus treating them as being independent, c.f. the discussions in [34, 1].
In our setting, all mutually dependent parts are combined in the same group. The joint
optimization of correspondences and transformations forces these dependent parts to
agree upon a joint overall vote.

(x, σ)> = (xQi − T
νxTj C(i) + tν , σν)> (13)

where tν and σν are the translation and scaling component of T ν . Evidently, all parts
in a group are coupled by using the same transformation matrix T ν and the jointly
optimized correspondences Cij . After jointly optimizing the votes of all dependent
parts, the group vote can be obtained by averaging over the part votes. The Hough
accumulator for the voting of groups is obtained by summing over independent groups
rather than over dependent parts as in standard Hough voting. Since groups are mutually
independent, their summation is justified. Analogous to (2) we obtain

(14)

Hgrp(c,x, σ) ∝
∑
ν

1
GνR(Gν)

×
∑
i∈Gν

∑
j

Cij · P (x− [xQi − T
νxTj + tν ], σ − σν)

where P (•) is obtained using the balloon density estimator [9] with Gaussian Kernel
K, Kernel bandwidth b, and distance function in scale space d : R3 × R3 7→ R,

P (x− [xQi − T
νxTj + tν ], σ − σν) = K

d
[
(x, σ)>; (xQi − T νxTj + tν , σν)>

]
b(σ)


(15)
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Algorithm 1 Voting with groups of dependent parts: Joint optimization of groupings,
correspondences, and transformations.

Input: • parts from query image:fQi , xQi ,
• UCM-connectivity [4] Āii′

• parts from all training images: fTj , xTj
Init: • pairwise clustering on Āii′ →Miν()

1 do
2 C(i)← argminj dT ν (i, j)
3 Miν(i)← argminν dT ν (i,C(i))
4 T ν ← argminT

P
iMiν

P
j Cij(λ2δ

2
T ν (i,C(i)) + λ3δ

3
T ν (i,C(i)))

5 until convergence
6 Hgrp(c,x, σ)← Eq. (14)
7
˘

(xh, σh)>
¯
h
← Local minima ofHgrp

3.4 Bottom-Up Grouping

Object detection in a query image starts by computing a probabilistic edge map [4] and
uniformly sampling edge points. Next, we perform a bottom-up grouping on the proba-
bilistic edges which serves as an initialization for ν in section 3.1. Two edge points i, i′

are considered to be connected on level s of the hierarchical ultrametric contour map of
[4], if they are on the boundary of the same region on this level. Let 1 = As

ii′ ∈ {0, 1}
denote this case. Averaging over all levels, Āii′ ∝

∑
sA

s
ii′ , yields a similarity measure

between points and pairwise clustering (using Ward’s method) on this similarity matrix
produces a grouping Miν which we use to initialize the optimization of (9).

3.5 Hypothesis Verification

Due to intra-class variations and noise, the votes of all parts in a group cannot be brought
into perfect agreement. As is common practice in voting approaches, we employ a ver-
ification stage, where a SVM classifies histograms of oriented gradients (extracted on
regular grids on 4 different resolutions and 9 orientations) using pyramid match kernels
(PMK). To train the SVM, positive examples for a category are the groundtruth bound-
ing boxes, rescaled to the average bounding box diagonal length of the class. Negative
samples are obtained by running our group voting on the positive training samples and
selecting false positive hypotheses, i.e. the most confused negative samples. In the ver-
ification stage, the SVM classifier is evaluated in a local 3 × 3 neighbourhood around
each voting hypothesis. This local search refines the voting hypotheses from the groups.

4 Experiments

We evaluate our approach on ETHZ Shape and INRIA Horses Datasets. These two
datasets feature significant scale changes, intra-class variation, multiple-objects per im-
age, and intense background clutter. We use the latest experimental protocol of Ferrari
et al. [16]: For ETHZ shape dataset, detectors are trained on half the positive samples of
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a category. No negative training images are used and all remaining images are used for
testing. For INRIA shape dataset, 50 horse images are used for training and the remain-
ing 120 horse images plus 170 negative images are used for testing. In all experiments,
the detection performance is measured using the PASCAL VOC criterion [16] (requir-
ing the ratio of intersection and union of predicted and groundtruth bounding box to be
greater than .5).

4.1 ETHZ Shape Dataset – Performance Analysis

Fig. 2 compares our approach with state-of-the-art voting methods on ETHZ. Voting
with our groups of dependent parts outperforms all current voting based approaches.
We achieve a gain of 27% over the Hough voting in [16], an improvement of 19%
over [25], and 17% higher performance than [28], see Tab. 1. Even compared with
the local sliding window classification in [28] (PMK re-ranking) we obtain a slightly
higher performance (1.4%). The PMK re-ranking is a separate classifier that performs
verification of votes. Thus our voting method alone not only improves current Hough
voting approaches, but also produces results beyond those of the verification stage of
some of the methods.

The primary focus of this paper is to improve Hough voting by modeling part depen-
dence. Nevertheless, we also investigate the combined detector consisting of voting and
a verification stage. The results are shown in Fig. 2. Our results compare favourably with
sliding window classification in [28]. This approach has to search over 104 hypotheses
whereas our approach produces on the order of 10 candidate hypotheses. Consequently,
the gain in computational performance of our approach is between two and three orders
of magnitude. Compared to preprocessing steps such as extraction of probabilistic edge
maps and computation of geometric blur, our grouping, voting and correspondence op-
timization has insignificant running time. Nevertheless, we obtain a gain of 3.68% over
sliding windows at 0.3 fppi. Compared to the best verification systems [25], we obtain
a gain of 0.68% at 0.3 fppi.

Fig. 3 compares the supervised methods of [35] against our detector (which only
needs training images with bounding boxes). Without requiring the supervision infor-
mation of [35], we are dealing with a significantly harder task. [16] showed a perfor-
mance loss of 15% at 0.4 fppi.Nevertheless, we perform better on 3 out of 5 categories.
(actual values of [35] are unavailable).

Let us now compare the reliability of votes from individual parts with the reliabil-
ity of object hypotheses produced by our groupings. Therefore, we map object query
features (features from within the groundtruth bounding box) onto the positive training
samples and we do the same for background query features. By comparing the match-
ing costs we see how likely positive query features are mistaken to be background and
vice versa. Then we are doing the same for groups, i.e. groupings (11) from the object
and from the background are mapped onto positive training samples. Fig. 5 shows that
groups have a significantly lower error rateR (30% vs. 77%) to be mapped onto wrong
training samples. Thus group votes are significantly more reliable. Fig. 4 shows the vot-
ing of parts before and after optimization. Voting with groups produces concerted votes
whereas independent parts(singleton groups) produce votes with significant clutter.
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Fig. 2. Detection performance. On average our voting approach yields a 27% higher performance
than standard Hough voting and improves line voting [28] by 17%.

4.2 INRIA Horse dataset – Performance Analysis

Figure Fig. 6 shows the performance of voting with groups and the overall detector
(voting + verification). Voting with groups significantly outperforms the best voting
methods so far (M2HT detector), e.g., roughly 12% gain at 3 fppi. In terms of overall
performance, we have a detection rate of 87.3% at 1 fppi compared to the state of the
art results of 85.27% for M2HT + IKSVM and 86% for sliding windows (IKSVM).

5 Discussion

We have tackled the primary weakness of Hough voting methods, the assumption of
part independence, by introducing the grouping of mutually dependent parts into the
voting procedure. Therefore, we have formulated voting-based object detection as an
optimization problem that jointly optimizes groupings of dependent parts, correspon-
dences between parts and object models, and votes from groups to object hypotheses.
Rather than using uncertain local votes from unreliable local parts we utilize their de-
pendences to establish extended groups that reliably predict global object properties
and are thus producing reliable object hypotheses. Compared to the sliding window
paradigm, our voting approach reduces the number of candidate hypotheses by three
orders of magnitude and improves its recall. Our model of part dependence in voting
has demonstrated that it significantly improves the performance of probabilistic Hough
voting in object detection.

Acknowledgements. This work was supported by the Excellence Initiative of the
German Federal Government, DFG project number ZUK 49/1.
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Fig. 3. Comparing our voting+verification with the supervised approach [35]. [16] has shown that
our training scenario is significantly harder and yields 13% lower recall at .4 FPPI

Fig. 4. Left plot in panels (a) and (b) shows standard Hough voting which assumes mutual inde-
pendence between features. Right plot in panels (a) and (b) shows the voting after joint optimiza-
tion of correspondences, groups, and votes.
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Cat Hgrp Hough
[16]

M2HT
[25]

voting
[28]

Hgrp vo-
ting+verif

Full
system

[28]

Sliding
Windows

Full syst
[16]

M2HT+
IKSVM

[25]

Apples 84.0 43.0 85.0 80.0 95.83 / 95.83 95.0 / 95.0 95.8 / 96.6 77.7 / 83.2 95.0 / 95.0
Bottles 93.1 64.4 67.0 92.4 96.3 / 96.3 89.3 / 89.3 89.3 / 89.3 79.8 / 81.6 92.9 / 96.4
Giraffes 79.5 52.2 55.0 36.2 81.82 / 84.09 70.5 / 75.4 73.9 / 77.3 39.9 / 44.5 89.6 / 89.6
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Avg 80.0 53.3 60.9 63.0 92.58 / 93.35 87.2 / 88.8 88.9 / 90.1 67.2 / 72.0 91.9 / 93.2
Table 1. Comparing the performance of various methods. Detection rates (in [%]), PASCAL
criterion .5 overlap. The approach of [25] use positive as well as negative samples for training
whereas we use only positive samples for training. Our voting yields a 27% higher performance
than the Hough voting in [16], 19% gain over max-margin Hough voting [25], and 17% gain over
line voting [28], thus significantly improving the state-of-the-art in voting.

Fig. 5. Reliability of parts (singleton groups), left plot vs. groups, right plot. The plots show the
misclassification rate of groups and parts for different matching cost R. The optimal error rate
for parts is 77%, for groups 30% thereby underlining the increased reliability of groups.
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Fig. 6. Detection plots on INRIA Horses dataset. Left plot compares the M2HT detector for differ-
ent parameters with our group voting. Voting with groups is superior to all. Right plot compares
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