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Abstract

Object, action, or scene representations that are cor-

rupted by noise significantly impair the performance of vi-

sual recognition. Typically, partial occlusion, clutter, or ex-

cessive articulation affects only a subset of all feature di-

mensions and, most importantly, different dimensions are

corrupted in different samples. Nevertheless, the common

approach to this problem in feature selection and kernel

methods is to down-weight or eliminate entire training sam-

ples or the same dimensions of all samples. Thus, valuable

signal is lost, resulting in suboptimal classification.

Our goal is, therefore, to adjust the contribution of indi-

vidual feature dimensions when comparing any two sam-

ples and computing their similarity. Consequently, per-

sample selection of informative dimensions is directly inte-

grated into kernel computation. The interrelated problems

of learning the parameters of a kernel classifier and deter-

mining the informative components of each sample are then

addressed in a joint objective function. The approach can

be integrated into the learning stage of any kernel-based

visual recognition problem and it does not affect the com-

putational performance in the retrieval phase. Experiments

on diverse challenges of action recognition in videos and

indoor scene classification show the general applicability

of the approach and its ability to improve learning of visual

representations.

1. Introduction

Visual recognition is one of the central problems of com-

puter vision. It involves detection of objects and their lo-

calization in images [9], classification of actions and com-

plex activities [22, 1], scene recognition [25], and related

problems. Over the last decade the field has seen a tremen-

dous increase in performance. Among the many advance-

ments, two broad directions, which have boosted perfor-

mance significantly, are standing out. First, there has been a

lot of work on improving feature descriptors, interest points,

and the like. As a result, models of image and video con-

Figure 1: Computing a kernel for a given data matrix. Red are

components affected by feature selection, blue are samples se-

lected by SVM, and green are individual noisy components sup-

pressed by our approach. Note that per-sample kernel adaptation

only affects individual noisy comparisons, whereas red and blue

manipulate entire feature or sample planes.

tent have become significantly richer over the years, while

constantly increasing their dimensionality. Influential work

such as SIFT [20], HoG [7], video descriptors like HoF [16]

and dense trajectories [28], or most recently the filters cre-

ated by deep convolutional neural networks [15] have laid

the basis for many other approaches. A second broad theme

have been part-based models that integrate the content of

many local features and the spatial layout (e.g., geometry,

shape) of the class of interest. Popular models range all the

way from simple bag-of-features to object representations

with rich spatial structure such as deformable part models

(DPM) [9].

Although features and the object category models that

integrate them have been significantly improved over the

years, the currently popular theme of utilizing semi-local,

high-dimensional parts creates issues of its own. Due to

their spatial extent and high dimensionality these descrip-

tors are likely to contain noisy feature dimensions caused

by partial occlusion or clutter. Moreover, the dimensions

that are affected typically vary between instances of a vi-

sual category, e.g., since different areas of an object may

be corrupted. Nevertheless, typical solutions to this prob-
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lem are feature selection [12, 3], where the same feature

dimensions are eliminated from all samples, or the removal

or down-weighting of entire training feature vectors as in

SVM, see Fig. 1. So when facing individual noisy, unre-

liable feature dimensions, a lot of valuable information in

the other meaningful dimensions is lost by affecting entire

feature dimensions or samples.

Given a category representation, our goal is thus to

eliminate the noisy components of each training sample,

while retaining the complete signal. Simply suppressing

noisy features per sample [30] would not solve the prob-

lem: Recognition requires comparisons between instances,

for example to find the closest category to a sample. How-

ever, comparing two samples, which have different feature

dimensions set to zero, yields flawed similarities. Thus,

we need to down-weight the contribution of the individual

feature dimensions while computing similarities. This inte-

grates per-sample selection of reliable dimensions directly

into a kernel computation. The challenge is then to learn

the parameters that specify the kernel classifier, while de-

termining the reliable components of each sample that in

turn yield the kernel.

Existing per-sample feature selection (PSFS) methods

[11, 31, 19, 4] work only with additive kernels (e.g. lin-

ear kernel). They represent a kernel as a weighted sum of

other kernel functions, which measure similarity of individ-

ual feature vector dimensions. However, in many vision

problems the non-additive kernel functions such as radial

basis function (RBF) [33, 16], due to their non-linear cou-

pling between individual feature dimensions, demonstrated

better performance than the additive kernel functions that

decouple individual feature dimensions. Despite their su-

perior performance, non-additive kernel functions have not

yet been covered by the existing methods for PSFS. Simply

applying PSFS to an additive kernel and wrapping a non-

linear function around the result would yield a completely

new optimization problem that cannot be solved by exist-

ing PSFS techniques. Therefore, we generalize PSFS to

the non-additive kernel functions, and propose an optimiza-

tion method which directly finds and eliminates individual

noisy feature distances between pairs of samples inside a

non-additive kernel function.

Our approach is generally applicable as it improves the

learning of kernels and the resulting classifiers when fac-

ing noisy samples and it excels other per-sample learning

approaches that are applicable only to additive kernel func-

tions. However, the retrieval phase of our method remains

unchanged, so that computational performance is not af-

fected and it can be readily integrated into existing systems.

The proposed per-sample kernel adaptation efficiently sup-

presses noisy feature components and, thus, yields more ac-

curate similarities between samples. Besides recognition

we utilize the improved kernel also for action reconstruc-

Figure 2: An example frame of an sport video (left image) and its

reconstructions based on closest video fragments found by simi-

larities improved due to our kernel adaptation (right image) and

without (middle image).

tion in video by grouping related fragments from a large

corpus (Fig. 2).

2. Robust Visual Recognition by Estimating

Per-Sample Feature Reliability

In visual recognition problems, such as action recogni-

tion or scene classification, the goal is to find a classifier

f : RD → Y that maps a feature vector x ∈ R
D, which

represents an instance of a visual category (for example by

a bag-of-features [5], or a pyramid match kernel descriptor

[17]), to a visual class label y = f(x) ∈ Y . To simplify

notation we adopt the commonly used two-class scenario

Y = {+1,−1}, which is often extended to multiple classes

by a one vs. all approach. To learn the classifier f , a set

of training examples X = {(xi, yi) : i = 1, . . . , N} is

utilized. Kernel methods, in particular Support Vector Ma-

chines, are used in many object, action, and scene classifica-

tion problems. Here a kernel k implicitly induces a transfor-

mation φ, k(·, ·) = 〈φ(·), φ(·)〉, so that a hyperplane in the

mapped feature space maximizes the margin between the

classes, f(x) = w
⊤φ(x) + b. According to the representer

theorem [26], the classifier f can be expressed as

f(x) =

N
∑

i=1

αiyik(xi,x) + b, (1)

where (α1, . . . , αN ) are the dual variables (Lagrange mul-

tipliers) associated with training samples.

2.1. Reliability of Individual Features in Kernel
Computation

The kernel k(xi,xj) is a measure of similarity be-

tween feature vectors. Thus, the individual components of

both feature vectors are compared by computing distances

d(xil, xjl) before summarizing over all components, e.g.,

for Radial Basis Function (RBF) kernel the similarity mea-

sure is given as kγ(xi,xj) = exp(−γ
∑D

l=1(xil − xjl)
2).

However, the individual components xil can be noisy due to

occlusion or clutter, and for each sample xi different feature

dimensions xil may be affected, since oftentimes partial oc-

clusion and noise are corrupting only parts of the feature

vector. Consequently, the noise in individual features de-

grades the kernel values, yielding corrupted similarities.
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There are two converse approaches to deal with noisy

features in kernel methods. Feature selection, which as-

sumes all samples to have the same corrupted feature di-

mensions l, eliminates identical dimensions from all sam-

ples. Contrary to this, SVM multiplies each sample by a

non-negative weight αi, which can limit the influence of

entire samples. However, since all dimensions of a sample

are multiplied by the same weight, both signal and noisy

feature components are either down-weighted or amplified.

Consequently, when facing individual noisy, unreliable fea-

ture dimensions, a lot of valuable information in the other

meaningful dimensions is lost by affecting entire feature di-

mensions or samples of the data matrix (xil)il. In both cases

we will lose valuable information, when noisy dimensions

vary from sample to sample.

To establish a middle ground between both extremes of

affecting entire rows or columns of the data matrix, we need

for each sample i to estimate the reliability or importance

zil ∈ [0, 1] of each of its feature components xil. Feature

selection is a special case of this per-sample feature impor-

tance, where the zil has the same value for all samples i.
However, in the general case of sparse zil simply multiply-

ing them with the xil impairs distance computation and thus

corrupts the kernel. For instance replacing d(xil, xjl) with

d(0 · xil, 1 · xjl) will not help to reduce noise, but rather

creates a bias. To overcome this problem, the difference of

feature vectors xi and xj in dimension l should affect the

kernel value only, if both feature components xil and xjl

are important, i.e. zil and zjl have high value. If at least

one of them is noisy (unimportant), zil or zjl has low value

and the difference of feature components d(xil, xjl) should

not affect the kernel entry k(xi,xj).
A very broad class of kernel functions, known as Gen-

eralized Radial Basis Functions (GRBF), used in many vi-

sual recognition problems, such as image classification [33]

or action recognition [16], is defined for distance function

d(·, ·) as

kγ(xi,xj) := exp
(

−γ

D
∑

l=1

d(xil, xjl)
)

. (2)

Following up on above ideas, we should concentrate only

on those terms in the sum, where both components xil and

xjl are important. Thus, the terms are weighted with zil ·zjl.
The entries of the kernel function are therefore weighted by

the Hadamard (component-wise) product of feature reliabil-

ity vectors, zi ◦ zj = (zi1zj1, . . . , ziDzjD)⊤,

kγ(zi◦zj)(xi,xj) = exp(−γ

D
∑

l=1

zilzjld(xil, xjl)). (3)

2.2. Learning PerSample Feature Reliability

Subsequently we will discuss how to learn the per-

sample feature importance zi ∈ [0, 1]D by embed-

Figure 3: Mean average precision depending on the average per-

sample feature sparsity of vector 1 − zi that is controlled by pa-

rameter λ in Eq. (6).

ding it into regular SVM training. In the primal we

therefore need to optimize the regularized risk func-

tional for SVM parameters w and b and the zi. The

kernel function implicitly defines a mapping φz(x) by

kγ(zi◦zj)(xi,xj) = 〈φzi
(xi), φzj

(xj)〉. Thus, the deci-

sion function is fzi
(xi) = w

⊤φzi
(xi) + b . Moreover, we

adopt a soft-margin formulation by introducing slack vari-

ables ξi ≥ 0. Since the noisy features are sparse, we use

ℓ1-regularization of the feature vectors 1−zi. The learning

problem is then

min
zi∈[0,1]D

min
w,b,ξi

λ

N
∑

i=1

‖1− zi‖1 +
1

2
‖w‖2 + C

N
∑

i=1

ξi (4)

subject to yi(w
⊤φzi

(xi) + b) ≥ 1− ξi ∧ ξi ≥ 0.

The sum of slack variables ξi can be replaced by the sum

of hinge loss functions ℓ(xi) = max
(

0, 1 − yi · fzi
(xi)

)

that act as an upper bound on the training error. The learning

problem can thus be formulated as

min
zi∈[0,1]D

min
w,b

λ

N
∑

i=1

‖1− zi‖1 +
1

2
‖w‖2

+ C

N
∑

i=1

max
(

0, 1− yifzi
(xi)

)

. (5)

To avoid explicit computation of the mapping φ•(•), we

solve the inner optimization problem in its dual form. This
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Method Mean AP Method Mean AP

ITF [29] 83.3 S-T Graphs [2] 77.3

ITF (fast) 82.9 MRP [13] 80.6

Feature Selection [12] 82.9 CTT [10] 82.7

Per sample Feature Suppression 79.4 MKL (additive PSFS) [11] 85.5

PSKA (Eq. 6) 89.4 [29] w/ postproc. 91.1

PSKA (Eq. 6) w/ postproc. of [29] 91.6

Table 1: Mean average precision of various methods for action

recognition on the Olympic Sports dataset. Left side: Compar-

ing on the same baseline feature representation (ITF [29]) feature

selection, per-sample feature suppression, and our per-sample fea-

ture adaptation method (PSKA). Our PSKA with post-processing

from [29] outperforms the state-of-the-art methods listed in the

right part of the table.

leads to the following minimax problem

min
zi∈[0,1]D

max
αi

λ

N
∑

i=1

‖1− zi‖1 +
N
∑

i=1

αi

− 1

2

N
∑

i,j=1

yiyjαiαjkγ(zi◦zj)(xi,xj) (6)

subject to

N
∑

i=1

αiyi = 0 ∧ 0 ≤ αi ≤ C.

We have seen that 1−zi, which indicates unreliable fea-

tures, should be sparse. This sparsity is controlled by λ in

the learning equation (6), and it is determined via cross-

validation. In our experiments on the OlympicSports ac-

tion recognition dataset (Sec. 4.1), we change λ to induce

different degrees of sparsity on the per-sample unreliabil-

ity 1 − zi and plot the obtained mean AP as a function

of the average per-sample sparsity (Fig. 3). As expected,

zero sparsity yields the baseline performance [29]. As the

sparsity level increases, more and more noisy feature com-

ponents are suppressed and performance rapidly increases.

Fig. 3 shows that the mean AP is constant in a 5% wide

interval around the optimum and varies by less than a per-

cent in a 10% wide range, which implies that our method is

not sensitive to the value of the sparsity parameter λ. Since

performance peaks within a sufficiently wide range, cross-

validation can easily find the optimal parameter λ, as we

confirmed in our experiments.

2.3. Optimization

To solve (6) during learning we follow a coordinate de-

scent approach. The dual of the SVM optimization prob-

lem is solved to find the αi. Then we find the zi for each

training sample by solving an optimization problem that is

expressed as a difference of two convex functions. We solve

this problem by employing the Concave-Convex Procedure

(CCCP) [32].

To begin, the reliability of all feature dimensions is set

to one, zil = 1, which corresponds to the standard SVM

Figure 4: Further example frames of sport videos (left column)

and their reconstructions based on closest video fragments found

by similarities improved due to our per-sample kernel adaptation

(right column) and without (middle column). For the whole action

video dataset [22], kernel adaption improves similarities leading

to on average 0.51 ± 0.05 lower reconstruction error (rms) than

without.

problem. Given the current estimate of the zi, variables

αi are found as a solution of the convex SVM optimization

problem in the dual form (solved using LIBSVM),

max
αi

N
∑

i=1

αi −
1

2

N
∑

i,j=1

yiyjαiαjkγ(zi◦zj)(xi,xj) (7)

subject to

N
∑

i=1

αiyi = 0 ∧ 0 ≤ αi ≤ C.

To assure convexity of SVM dual optimization problem,

and hence the positive semi-definiteness of the kernel ma-

trix, we assumed that it might be necessary to multiply each

entry k(xi,xj) of the kernel matrix by exp(−β(1 − δij)),
where β is a small non-negative value and δ denotes the

Kronecker delta. However, in our experiments the kernel

matrix was always positive semi-definite, so β was always

set to zero.

Then a zi is updated given all other zj , j 6= i and all αi,

min
zi∈[0,1]D

λ‖1− zi‖1 −
1

2

N
∑

j=1

yiyjαiαjkγ(zi◦zj)(xi,xj).

(8)

The objective function in Eq. 8 is non-convex, but it can

be expressed as the difference g(zi)− h(zi) of two convex
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Figure 5: Reconstructing sport action sequences and their characteristic poses using per-sample kernel adaptation (PSKA), cf. Sect. 4.2.

Please view in color.

functions,

g(zi) :=
1

2

∑

j:yj 6=yi

αiαj exp
(

−γ

D
∑

l=1

zilzjld(xil, xjl)
)

+ λ‖1− zi‖1,

h(zi) :=
1

2

∑

j:yj=yi

αiαj exp
(

−γ
D
∑

l=1

zilzjld(xil, xjl)
)

.

We use the concave-convex procedure (CCCP) [32] to min-

imize the difference of convex functions g(·) and h(·). By

linearizing the concave part, CCCP iteratively solves a se-

quence of convex optimization problems,

z
t+1
i = argmin

zi

g(zi)−∇h(zt
i)

⊤
zi, (9)

subject to 0 ≤ zi ≤ 1.

The constrained convex optimization problem in Eq.

9 is solved using the standard projected gradient descent

method. This optimization converges quickly with number

of iterations that scales as O(1/ǫ). Applying accelerated

gradient descent [21] further reduces this to O(1/
√
ǫ). The

whole CCCP procedure is fast and typically converges in

order of ten iterations.

During training we embed our method within the stan-

dard kernel learning whose worst-case complexity O(N3)
dominates the complexity of the kernel matrix computation

and the CCCP-based optimization of our method that are

both O(N2D). Consequently, our method scales just as the

standard kernel learning, whose performance it is improv-

ing. Moreover, using recent highly efficient techniques for

large-scale kernel learning by Dai et al [6] further reduces

the overall complexity of our method.

2.4. Recognition Procedure

In the recognition phase a query sample xq is to be clas-

sified by labeling with the according visual category. We

have focused on the learning stage to enhance the decision

function which then improves recognition. By embedding

the per-sample feature selection within the standard SVM

approach, the procedure for retrieval remains basically un-

changed and the computational burden during recognition

is not affected. Therefore, we set zq = 1 and compute the

similarities between query sample and all training samples,

kγ(zi◦1)(xi,xq) using Eq. (3). Given this kernel, Eq. (1)

yields the final classification score. As our method affects

only the training phase, the computational complexity of

recognition stage is the same as in the underlying standard

SVM.

3. Beyond Recognition: Action Reconstruction

and Category Summarization

Per-sample kernel adaptation suppresses noisy feature

components to improve the kernel function and yield a more

robust measure of similarity between samples. Reliable

similarities are in turn crucial for finding related samples in

a dataset and grouping them. Thus our approach can help to

reconstruct a query from a large number of related samples

or summarize a category by identifying commonly occur-

ring patterns.

Action Reconstruction. We explore this in the context

of video analysis where for a short fragment of a novel

1255



Method Acc. (%) Mean AP

RM2C (baseline) [8] 51.3 46.7

PSKA w/ postproc. of [14] 63.6 64.4

Prototypes [25] - 25.1

Object Bank [18] 37.6 -

RBoW [24] 37.9 -

DPM+GIST-color+SP [23] 43.1 -

Patches+GIST+SP+DPM [23] 49.4 -

Mid-Level Patches [27] 38.1 -

BoP w/ postproc. [14] 63.1 63.2

Table 2: Classification accuracy and mean average precision on

the MITIndoor dataset. The first part of the table shows the re-

sults for the baseline RM2C method [8] and our approach that

uses the same features representation (mid-level part scores). The

per-sample kernel adaptation outperforms the baseline RM2C by

17.7% mean AP. Our PSKA with post-processing from [14] out-

performs the state-of-the-art methods listed in the second part of

the table.

video we find a large number of related subsequences from

training videos. From these videos we densely extract short

fragments (10 frames long) and represent these chunks us-

ing the standard feature representation of [29] discussed in

Sect. 4.1. Per-sample kernel adaptation then yields reliable

similarities and, thus, video fragments from the database are

ranked according to their relatedness to a query fragment.

By averaging over the best matching samples (we cut-off

after 50 and weight them according to their similarity) we

obtain a reconstruction of the original query and repeat this

for all subsequences of the query video. Results are pre-

sented in Fig. 4 utilizing our approach of per-sample ker-

nel adaptation (right column) and without (middle). Since

the similarities are measured based on the detected persons,

their characteristics are nicely preserved, whereas the large

deviations in the background blur out the clutter.

Fig. 5 shows the reconstruction frame sequences of five

different sports from the OlympicSports dataset [22]. The

approach to reconstruction based on PSKA is the same as in

Fig. 4. We see that our method nicely captures the temporal

evolution of the action and reveals the structure of a sport

as a sequence of characteristically articulated human poses.

Category Summarization. Let us now summarize an

action category by identifying commonly occurring frag-

ments. Therefore, we measure similarities between all short

subsequences extracted from the videos of an action class

based on our approach (typically around 3000 fragments

for the classes of [22]). All fragments in a video get the

action class label of the whole video, so Eq. 6 becomes ap-

plicable. Performing clustering using the normalized cut al-

gorithm yields clusters of related fragments and we choose

the samples closest to the cluster center as representative

for visualization. Bearing paper length in mind we compute

and portray a five cluster solution for the basketball class in

Figure 6: Action category summarization by grouping related ac-

tion components using the proposed kernel adaptation based dis-

tance measure. The basketball class splits up into groups that rep-

resent running (first filmstrip), walking (second row), blocking

(third row), passing (fourth row), and jumping (fifth row).

Fig. 6, with individual frames of each cluster being shown

as filmstrip. The clustering summarizes characteristic as-

pects of this category that are occurring frequently such as

running, walking, blocking, passing or jumping.

4. Experimental Evaluation

Subsequently, we evaluate the proposed per-sample ker-

nel adaptation on two diverse visual recognition problems,

for which there is a consensus in literature about standard

features and preprocessing techniques. This allows for a fair

comparison to state-of-the-art, so difference in performance

can be attributed to the method and not to different features

or preprocessing. First we investigate the potential of our

approach for action recognition in videos and their recon-

struction, where we use the popular Olympic Sports bench-

mark set [22]. Afterwards we study recognition of indoor

scenes on the standard MITIndoor benchmark dataset [25].

In both cases, we build on top of the most recent feature

representations and classifiers proposed for these datasets to

investigate the ability of our method to yield a further im-

provement. Our per-sample kernel adaptation is then simply

integrated into these state-of-the-art approaches to eliminate

noisy feature contributions when computing the kernel ma-

trix. Essentially, we replace existing kernel-based learning

by Eq. (6) and the corresponding optimization from Sect.

2.3. The recognition procedure remains unaltered.

4.1. Action Recognition in Videos

To evaluate the potential of our approach for action

recognition we utilize the Olympic Sports dataset [22] that

features athletes performing 16 different sport actions, such

1256



basket bowl clean discus dive dive hamm. high jave long pole shot snatch tennis tripple vault mean

ball ing &jerk throw 10m 3m throw jump lin jump vault put jump

ITF (fast) 97.5 77.9 78.0 85.1 100 100 95.2 61.4 100 88.3 89.5 71.0 72.1 94.5 35.0 81.1 82.9

Feature Selection [12] 96.7 78.6 78.8 85.7 100 100 95.2 58.3 100 84.8 85.0 72.3 75.0 97.7 33.6 82.5 82.9

Per Sample Feat. Suppr. 97.5 80.5 78.6 85.1 100 100 93.9 53.7 100 81.8 58.2 54.3 67.4 91.1 47.4 80.6 79.4

PSKA 98.3 82.3 87.2 89.9 100 100 100 63.0 100 93.5 98.0 82.7 81.8 100 67.5 86.3 89.4

PSKA w/ postproc. of [29] 100 86.4 91.7 95.7 100 100 98.0 86.5 100 100 88.6 83.5 91.4 100 60.6 82.8 91.6

Table 3: Per-category average precision for the Olympic Sports dataset. All methods use the same feature representation as in the ITF

baseline [29]. Abbreviations are the same as in Table 1. The proposed per-sample kernel adaptation (last two rows) significantly improves

performance.

as high jump, vault, bowling etc. The dataset consists of

783 videos obtained from YouTube. We follow the standard

experimental setup of [22], i.e., use 649 videos for training

and test on the remaining 134 video sequences. For each

category we train a one vs. all classifier, and report its aver-

age precision. Finally, mean average precision is computed

over all categories.

For action recognition, dense trajectory features [28] and

their extension, the improved trajectory features (ITF) [29],

are very popular descriptors that have been widely em-

ployed. Therefore, we also use ITF features, which capture

local appearance and motion information of a video by com-

bining HOG, HOF, motion trajectories, and motion bound-

ary histograms (MBH). We follow the standard setup and

create a bag-of-features from the quantized ITF features and

train a non-linear SVM classifier using a Gaussian kernel (γ
being set to the inverse of the average pair-wise dissimilar-

ity of all training samples). To speed up the computation

of the kernel matrix during training, we replace the χ2 dis-

tance in the Gaussian kernel with the ℓ1 distance. This re-

duces training time by a factor of two (30 min on an i7 desk-

top) and decreases mean AP only marginally by 0.4% (our

fast ITF feature implementation achieves 82.9% compared

to 83.3% of [29], c.f. Table 1). Since the underlying fea-

tures and setup is the same as in [29], the proposed method

of per-sample kernel adaptation (PSKA) is the only differ-

ence. It yields 89.4% mean AP (Tab. 1), which is a 6.5%
improvement over the fast implementation of the baseline

ITF method [29].

Furthermore, we compare with standard feature selec-

tion [12] that eliminates the same feature dimensions in all

samples. The number of eliminated components by feature

selection is set to be the same as the number of feature com-

ponents that are assigned low reliability (zil < 1/2) by our

PSKA method (we also experimented with different num-

bers, which however did not increase results). The feature

selection (cf. Table 1) does not improve over the baseline

method (fast ITF), since it also removes meaningful com-

ponents. This emphasizes the benefit of the proposed ap-

proach, which achieves 6.5% higher mean AP, as it only

eliminates the noise.

We also examine the effect of directly suppressing indi-

vidual feature components, i.e., by multiplying zil · xil, and

compare it with our approach, which eliminates noisy pair-

wise distances in the kernel space. For a fair comparison

of these complementary approaches, the zil are the same in

both cases. The result in Table 1 shows that per-sample fea-

ture suppression significantly reduces performance by 10%
compared to our per-sample kernel adaptation (PSKA). This

is understandable since comparisons between zil · xil are

flawed when zil differ between samples, cf. Sect. 2.1.

Table 1 also shows that our method yields competitive

performance with respect to state-of-the-art methods on the

Olympic Sports dataset [29, 2, 13, 10, 11]. In particular,

the comparison shows that using the same features, our

approach achieves an improvement of 4% with respect to

MKL [11] that is a current, competitive method for additive-

kernel per-sample feature selection (PSFS). Moreover, us-

ing the post-processing of [29] we gain an additional 2.2%,

yielding a competitive performance of 91.6%.

In Table 3 we compare for each category of the Olympic

Sports dataset the baseline ITF method [29], feature selec-

tion [12], per-sample feature suppression, and our PSKA

approach. Compared to the fast implementation of ITF [29]

we see a significant improvement of about 10% on four cat-

egories and more than 30% on triple jump.

4.2. Action Reconstruction Using Improved Kernel
Similarity

Fig. 2 and Fig. 4 show that the proposed kernel adapta-

tion improves similarities between fragments of action se-

quences. Based on these robust relations between subse-

quences, related frames can be aggregated, thus enabling a

reconstruction of meaningful parts of videos as discussed in

Sect. 3. We evaluate reconstruction quality using the whole

action video dataset (cf. Fig. 4). On average the proposed

PSKA leads to 0.51±0.05 lower reconstruction error (root-

mean-square deviation) than the baseline method that uses

standard kernel similarity. Furthermore, Fig. 5 shows that

through aggregating related frames PSKA nicely retains the

visual information relevant for the action while suppressing

irrelevant background clutter. In that process meaningful

aspects such as characteristic poses and their change over

time are retained, while irrelevant and highly variable prop-
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Figure 7: Average precision for all categories of the MIT indoor dataset. Categories are ordered according to our method’s AP (red curve).

There is a consistent improvement compared to the baseline of this benchmark [25] (green) and over RM2C (blue) [8], which is the basis

for our scene representation.

erties such as the color of athletes’ shirts are disregarded.

Similarly, less characteristic poses are extenuated such as

in the long jump category the highly volatile twisting in the

sand upon landing.

4.3. Scene Classification

To show that our approach is not limited to video recog-

nition but also applicable to static images, we evaluate

our method on scene recognition. We use the challeng-

ing MITIndoor benchmark image dataset [25]. The dataset

consists of 67 indoor scene categories, such as bookstore,

lobby, classroom etc. The dataset contains in total 6700 im-

ages, such that each category contains 80 images for train-

ing, and 20 images for testing. As a baseline scene repre-

sentation we employ the randomized parts (RM2C) of [8],

downloaded from the authors’ website. We follow the stan-

dard protocol of [25] and train one vs. all classifiers for

each scene category and evaluate them by computing clas-

sification accuracy and mean average precision. We use the

same Gaussian kernel with ℓ1 distance as in Sect. 4.1. Ta-

ble 2 compares our per-sample kernel adaptation (PSKA)

to RM2C [8], which is the basis for our scene representa-

tion, as well as to other state-of-the-art methods for scene

classification. By estimating the reliability of the random-

ized parts from [8] our method effectively suppresses noisy

parts in kernel computation, which results in 17.7% im-

provement in mean AP over the baseline and 12.3% im-

provement in classification accuracy. We also compare to

established methods for scene classification that use simi-

lar part-based representations. Our method’s mean AP of

64.4% is an improvement of 1.2% over the state-of-the-art

bag of parts (BoP) method [14], whose post-processing we

also used and directly added to our model to be comparable,

without adjusting any parameters.

Moreover, Fig. 7 shows per-class average precision for

all 67 categories of the MITIndoor dataset. We see that our

method consistently improves upon baseline RM2C [8] and

[25] on all categories of this dataset.

5. Conclusion

We have presented an approach to deal with one of the

main problems of visual recognition—noisy representations

that impair recognition performance. Per-sample removal

of corrupted feature dimensions integrated into kernel com-

putation retains reliable feature components while suppress-

ing the flawed ones. Evaluation on the divergent tasks of

action recognition, reconstruction, and scene classification

has shown that this approach can be readily integrated into

the learning stage of kernel-based recognition systems to

improve their performance.1

1This research has been funded in part by the Ministry for Science,

Baden-Württemberg and the Heidelberg Academy of Sciences, Heidel-

berg, Germany.
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