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Abstract. The collective activity of a group of persons is more than a mere
sum of individual person actions, since interactions and the context of the over-
all group behavior have crucial influence. Consequently, the current standard
paradigm for group activity recognition is to model the spatiotemporal pattern
of individual person bounding boxes and their interactions. Despite this trend
towards increasingly global representations, activities are often defined by semi-
local characteristics and their interrelation between different persons. For captur-
ing the large visual variability with small semi-local parts, a large number of them
are required, thus rendering manual annotation infeasible. To automatically learn
activity constituents that are meaningful for the collective activity, we sample lo-
cal parts and group related ones not merely based on visual similarity but based
on the function they fulfill on a set of validation images. Then max-margin mul-
tiple instance learning is employed to jointly i) remove clutter from these groups
and focus on only the relevant samples, ii) learn the activity constituents, and iii)
train the multi-class activity classifier. Experiments on standard activity bench-
mark sets show the advantage of this joint procedure and demonstrate the benefit
of functionally grouped latent activity constituents for group activity recognition.

Keywords: Group Activity Recognition, Latent Parts, Multiple-Instance Learn-
ing, Functional Grouping, Video Retrieval

1 Introduction

Over the last years there has been an ever growing interest in recognizing activities
of groups of persons in video [24, 29, 32]. Whereas action recognition has a focus on
the actions individual persons perform, group activities involve a group of people that
perform the same or a related action in the scene such as talking to another. Thus, col-
lective activity recognition is especially challenging as it depends on interactions and
group behavior and so it is more than just the sum of individual person actions. For
example the activity of lining up in a queue and the activity of waiting for a green light
both exhibit the same individual standing actions and thus cannot be distinguished on
that level. Conversely, analyzing the behavior of a single person benefits from recog-
nition of group activities since noise and local occlusions can be overcome given the
observations from the whole group. A main goal of this field is therefore to recognize
the activity of a varying number of people and localize it on the level of person bounding
boxes by identifying for each person what activity they partake in.
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Fig. 1: Collective activities in videos can be recognized from semi-local characteristic
parts that are grouped into a set of activity constituents by their common function on a
validation set. Colors indicate different constituents and for legibility only a subset is
shown.

The main theme is presently to estimate the activity of a complete person bounding
box based on its visual features, motion, etc. [21, 8]. Thereafter contextual interactions
are incorporated by re-classifying the activity at each bounding box based on the ac-
tivities at neighboring boxes. The underlying rationale is that activities depend on the
overall visual pattern of a bounding box and the activities in its neighborhood. Our
hypothesis is that activities are much better characterized not on the level of bounding
boxes but based on a large number of characteristic activity constituents and their inter-
actions within the group. For example, if a detected constituent features a hand holding
a tray, this indicates a person waiting in a queue.

Obviously, there are many different characteristic activity constituents and interac-
tions thereof conceivable. Therefore, we cannot expect users to label them beforehand
as in [5] and models limited to a small number of parts such as [14, 15] are not suited.
Activities call for a large number of latent constituents with flexible but characteristic
mutual arrangements and they need to be learned automatically without manual anno-
tation. Training a large number of part classifiers, however, leaves only few samples per
classifier. Moreover, many of these parts might be redundant (related regions coming
from different persons) and recognition with too many redundant constituent classifiers
is an unnecessary computational burden. Consequently, related parts need to be grouped
into meaningful activity constituents before training a constituent classifier for each
group. Fig. 1 shows a subset of the detected activity constituents for recognizing group
activity in these two scenes. However, due to the curse of dimensionality, visual similar-
ity becomes quickly unreliable in high-dimensional feature spaces. Consequently, the
resulting groups would be cluttered and impair the subsequent learning of models for all
parts within a group. As an example consider two patches on the legs of a person, one
patch being larger and showing a shifted crop-out w.r.t. the other. Their feature vectors
are vastly different, although both patches have the same function, i.e., they represent
the gait of a walking person. Therefore, we match each patch to a set of validation im-
ages. Comparing their activations on a large number of validation samples, groups parts
according to what function they have in these images, thus going beyond a mere visual
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similarity. Since the grouped parts are sampled from noisy, cluttered scenes the result-
ing functional groups contain outliers. We thus frame the training of the constituent
classifiers for each group as a multiple instance learning problem. Discriminating the
activity constituent from negatives and removing irrelevant candidate instances from
its group are tackled jointly. All of these activity constituents are then combined in a
multi-class activity classifier, which is optimized together with its activity constituents
to model their characteristic co-activations. Learning the activity constituents, selecting
meaningful part samples for this learning, and optimizing the overall activity classifier
are then coupled in a single objective function to represent concerted group activities.

2 Related Work

Action recognition in video has made significant progress over the last decade [29, 32].
A large body of literature on action recognition includes sparse feature representations
by Dollar et al. [12], compositional models [27], action descriptions using correlations
by Laptev et al. [22] or latent semantic analysis by Niebles et al. [26]. A very good
summary on the action recognition techniques is provided in the survey [31].

Whereas action recognition is only concerned with actions performed by a single
person or pairs of persons, recognition of group activities is about inferring the col-
lective behavior of a group of persons that perform related actions. As the actions of
individual persons are interrelated, the context of other persons in the scene is impor-
tant for the overall activity. Pairwise interactions between persons in a scene are used
for recognizing human activities in [28]. [3] propose a joint parsing of entire scenes
for detecting abnormalities in video. Xiang and Gong [33] reason about temporal and
causal correlations among scene events in a video. The recognition of group activities
is very challenging because of the complex interactions between persons in a scene.
Some authors proposed various contextual descriptors for representing the group activ-
ities [9, 19, 10]. Hierarchical models that unify individual actions, pairwise interactions
and group activities were proposed in [20, 8].

Recent work on collective activity recognition aims to jointly solve the problems
of group activity recognition and person tracking [18, 17, 7]. Choi and Savarese [7]
leverage target interactions for guiding target associations, and use different levels of
granularity for encoding the activities. Amer and Todorovic [1] allow for arbitrarily
large numbers of activity participants and localize parts of the activity using a chain
model of group activity. In [2] the authors use a three-layered AND-OR graph to jointly
model group activities, individual actions, and participating objects. Khamis et al. [18]
combine per-track and per-frame cues for action recognition and bounding box tracking.

Human body patches with similar pose and appearance have been obtained in Pose-
lets [23] by a very detailed manual annotation of the joints of persons. In contrast to this
tedious labeling task, our method automatically discovers functionally related parts and
learns the latent constituents jointly with the activity classifier using multiple-instance
learning. Related work on mid-level discriminative patches [30] and intermediate com-
positional parts [13] learn the patches independently from the overall classifier. Con-
sequently, mid-level patches do not directly maximize the overall classification per-
formance. In contrast, our approach jointly optimizes constituent parts and the group
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Fig. 2: Reconstructing query image
(left) using groups of parts found
by visual similarity based cluster-
ing (middle) and using functional
grouping (right). See text for the
details.

activity classifier. Moreover, a functional grouping based on similarity of part activa-
tion patterns on a validation set leads to more consistent initial part clusters than those
based on visual part similarity.

3 Learning Functional Constituents of Group Activities

Group activity recognition requires for each person to infer which collective activity
they partake in. That is, for each person bounding box we seek the activity that is
consistent with other interacting persons in the scene. To capture the peculiarities of
activities we have to go beyond a mere representation on the level of bounding boxes
and grasp the semi-local constituents of activities. Due to the large within-class vari-
ability this requires a large number of parts, so learning a separate model for each part
is neither statistically feasible (few training samples in high-dimensional feature space)
nor computationally practical (high complexity).

Our approach adaptively seeks the feasible middle-ground between two extremes:
(i) a single or only few complex classifiers that try to capture all characteristics of activ-
ities with all their multi-modal variabilities, and (ii) an impossibly large number of sep-
arate classifiers for each part with too few training samples for each and redundancies
between them. Thus we aim at grouping related semi-local parts from different train-
ing images according to the function they take in a set of validation images, so we can
train a single, more powerful classifier for each group of related activity constituents.
Functional grouping yields a candidate set of part instances per activity constituent, but
groups may still contain clutter and spurious part samples. That is why classifiers for ac-
tivities and their latent constituents are learned jointly by employing multiple-instance
learning to select only the relevant instances for each constituent from its candidate set
(see Fig. 3).

3.1 Functional Grouping of Part Instances

Our goal is to learn the latent constituents that make up the group activities without
having manual annotations for these components. Constituents are semi-local regions
that cover characteristic parts of persons and their surroundings. Due to their number
and flexible arrangement they successfully bridge the gap between local features and the
group activity with its large spatial extend. To this end we need to resolve the crucial
limitations of present activity recognition systems: they are limited to only a small set
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of predefined parts and require manually annotated training samples for each [8, 17, 21].
Therefore, we seek to automatically learn a large number of constituents that effectively
capture the characteristics of an activity.

To learn the latent constituents of group activities, we first randomly sample a large
number of parts Ri at different locations xi ∈ R2 and sizes si ∈ R+ within person
bounding boxes so that there is a good coverage of all training instances of an activ-
ity class. To be comparable to previous work, we follow the same person detection
approach as in [18, 21] to obtain the person boxes.

The probability of sampling a part Ri is inversely proportional to its overlap with
already previously sampled parts Ri1 , Ri2 , . . . , Rin ,

ωi ∝
(
max
n

|Ri ∩Rin |
|Ri ∪Rin |

+ ε
)−1

. (1)

Parts that are sampled from different bounding boxes do not have any pixel in common,
so their intersection is zero. Therefore, regions that have not yet been sampled will have
a high likelihood of being selected, thus improving the overall coverage.

A part instance Ri that is extracted from a person bounding box is described by the
feature vector fi ∈ F . To compare to previous work we utilize the same feature space
F as in [7], a bag-of-feature (BoF) [12] and histograms of oriented gradients (HoG)
features.

Despite variations in their feature vectors fi, many of the sampled parts are related
instances with the same function or meaning for the overall activity. They are instances
of the same component of an activity such as different images of a knee bent at right
angle represent the same aspect of the jogging activity. Training a separate classifier
for each sampled part instance is not feasible, since this would yield a large number of
mutually redundant classifiers with few training data for each. Moreover, recognition
would not be practicable, because a large set of related classifiers would all need to
be evaluated. Thus we need to group functionally related parts that represent the same
characteristic within the overall activity.

Inferring useful groups of parts is a challenging problem. Parts with the same mean-
ing are commonly not close in the high-dimensional feature space of their descriptors.
Consequently, feature similarities are quickly becoming arbitrary given only little noise
or visual variation. The problem of visual grouping can, however, be circumvented by
observing the activation pattern of each part on an independent validation set. Part in-
stances that are simultaneously active or inactive on many validation samples in similar
regions are related to the same target concept. These parts have the same function in
explaining the group activity and so we refer to this process as functional grouping in
contrast to a grouping based on feature descriptor similarity.

We first divide the positive training samples into a training and validation set T and
V (3/4 vs. 1/4). Then we find for each part {fi}i∈T from the training set its k best
matches from the validation set {f ′i}i′∈V . To find these matching parts we employ an
approximate nearest neighbor search [25]. Let Vi ⊆ V refer to the k best matches for
the i-th training part. The activation pattern of this training part is then given as a Gibbs
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Fig. 3: Visualization of latent constituents of the group activities from the 5-class
datasets. Columns show eight randomly drawn activity constituents. For each con-
stituent five of its randomly sampled parts are shown.

distribution over the validation set, with support Vi,

αi(v) :=

{
1
Zi

exp
(
−β∆(fi, fv)

)
, if v ∈ Vi

0, if v ∈ V \ Vi
(2)

where ∆(·, ·) is a distance function between the sampled parts which combines the
distance d(·, ·) in the feature space F with the differences in parts’ location and size,

∆(fi, fv) := d(fi, fv) + λx‖xi − xv‖+ λs|si − sv|. (3)

To balance individual distances, we use λx and λs as the quotients of the feature vari-
ance to the variances of parts’ location and size, respectively. Zi is the partition function
of the Gibbs distribution,

Zi =
∑
v∈Vi

exp
(
−β∆(fi, fv)

)
. (4)

To group related parts into a set of meaningful activity constituents, we perform
agglomerative clustering (Ward’s Method) based on the functional relatedness of parts
fi and fi′ , i, i′ ∈ T , estimated by calculating the distance between part activation pat-
terns αi and αi′ . As a result of clustering, training instances of all parts {Ri}i∈T are
divided into disjoint groups of related parts {T1, T2, . . . , TG}. Each group Tg contains
part instances that are related to the same concept. Now we can train a discriminative
classifier with weight vector wg for g-th activity constituent that separates its positive
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training samples in Tg from a set of random negatives Ng drawn from other activi-
ties. Note that these classifiers do not distinguish between activities but only detect the
presence of certain characteristic components of an activity.

Activity Reconstruction with Functional Groups: Let us now reconstruct a query
image using the functional groups, Fig. 2. For each part sampled in the query image
we infer the activity constituent g with maximal score from its linear classifier wg on
that part. Then we randomly select a training part i ∈ Tg from its functional group.
The final reconstructed image is then obtained as the weighted average (weighted with
the classifier scores) of all individual sampled parts i which are then placed at locations
of the original parts of the query image. As an additional experiment we cluster parts
according to their mere feature similarity (also using Ward’s method) and sample from
the resulting groups. As illustrated in Fig. 2 the reconstruction from functional groups
captures the characteristics of activities, whereas the reconstruction based on the visual
similarity leads to fuzzy clusters and therefore looses important details during recon-
struction.

3.2 From Constituent Classifiers to Activity Classification

Since our final goal is not only to discover group activities, but also to localize them by
labeling each person with the activity it is part of, for each person the context of other
persons in the group matters. A commonly used representation for action context is the
descriptor from [19]. Here we extend this representation and employ it not once per per-
son as in [21, 17], but for each activity constituent g. Consequently, we are establishing
context on the level of constituents rather than merely between person bounding boxes.

The action context descriptor for a constituent g divides the spatio-temporal vol-
ume around the j-th person detection that this constituent belongs to into disjoint sub-
volumes {Nj,1, . . . , Nj,M} (parameters as in [19]). Then the constituent classifier wg

searches for other occurrences of the same constituent in each of the neighboring re-
gionsNj,m. The response forNj,m is the maximal score of the classifier on all fi within
Nj,m,

qj(m, g) = max
i∈Nj,m

w>g fi. (5)

q then expresses relationships between different detections of a constituent in the neigh-
borhood.

The joint activity representation qj for person j is obtained by concatenating score
function values qj(m, g) for all sub-volumesm and constituents g. The activity score of
a person j for group activity a ∈ A is calculated using a linear classifier w>a qj , where
A is the set of all group activity labels and wa is a hyperplane that separates instances
with activity label a from instances of other group activities, i.e., this is a multi-class
classification problem which will be discussed in Sect. 3.4. Due to the max operation in
Eq. 5, the group activity is more than just a mere sum of activity constituents.

3.3 Inference in Novel Query Scenes

In the recognition phase, we need to detect group activities a ∈ A and localize them on
the level of bounding boxes. To get this process started, person bounding boxes are first
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5 Activities 6 Activities
Baseline (no latent constituents) 70.4% 83.3%
Constituents from Visual Grouping 71.7% 87.4%
Lat. Constituents + Functional Grouping 74.1% 89.2%
Lat. Constit. + Func. Grouping + Dense Traject. 75.1% 90.1%

Table 1: Comparing the latent constituent model with the baseline method (no con-
stituents, parts are whole bounding boxes), and method that uses constituents learned
by visual grouping. The gain of the latent constituent approach with functional group-
ing over the baseline are 3.7% and 5.9% on 5-class and 6-class benchmark sets, respec-
tively. Last row shows the results of the classification if standard feature representation
for the latent constituents is augmented with dense trajectories [32].

localized as in [18, 21]. Then the constituent classifiers wg detect occurrences and then
compute the context scores qj(m, g) for each person j using Eq. 5. The group activity
which a person j belongs to results from applying the overall activity classifiers,

aj = argmax
a′∈A

w>a′qj . (6)

3.4 Joint Learning of Group Activity and Constituent Classifiers

Let us now jointly learn the weights wg of all constituent classifiers and of the overall
activity models wa for all activity classes by adopting a max-margin rationale. The wg

should discriminate positive instances {fi}i∈Tg
of a constituent group from negative

ones {fi}i∈Ng
. However, since the training set T contains clutter (regions that are noisy,

contain outliers, or have been sampled from uninformative areas), the decomposition
of T into disjoint sets Tg by means of functional grouping in Sect. 3.1 still contains
these outliers. Identifying these outliers with the constituent classifiers wg and training
the wg with only the remaining meaningful instances are interrelated problems that
need to be solved jointly. We follow a Multiple Instance Learning (MIL) approach [16,
4], which selects positive instances from a positive bag that are used for training a
discriminative classifier. Our approach is motivated by the AL-SVM method [16] that
uses deterministic annealing to train the classifier and find the unknown instance labels
with the entropy regularizer H(·). We associate a probability pi ∈ [0, 1] to each part
i ∈ Tg , that indicates how meaningful i is for learning the g-th constituent classifier,
i.e., zero implies an outlier. The MIL objective is then to find at least ρ|Tg| positive
examples in a functional group g (we simply set ρ = 0.7 and observed only little
influence when changing ρ), so that the hinge loss error `(w>g fi) = max(0, 1−w>g fi)
of a regularized classifier wg is minimal,

min
wg,pi

‖wg‖2 + Cg

{∑
i∈Tg

pi`(w
>
g fi) +

∑
i∈Ng

`(−w>g fi)
}
− T

∑
i∈Tg

H(pi), (7)

s.t.
∑
i∈Tg

pi ≥ ρ|Tg| ∧ pi ∈ [0, 1],∀i. (8)
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(a) (b)

Fig. 4: a) Per-class categorization results (confusion matrix) on the 5-class collective
activity dataset [9]. The results are obtained by the proposed latent constituent method
with functional grouping using standard features. The average classification accuracy is
74.1%. b) The confusion matrix for the 6-class benchmark set [10]. Average classifica-
tion accuracy is 89.2%

Activity classification with wa (Eq. 6) now depends on all wg and their context
scores qj (Eq. 5). Thus we should not only optimize the wa, but jointly estimate the
wg , so that they improve the discrimination between activities in Eq. 6. Following the
standard training protocol of [9], training bounding boxes are provided for each person
j, together with their activity labels yj,a ∈ {1,−1}, where yj,a = 1 if person j par-
ticipates in activity a. Thus, optimizing wg and finding meaningful representative parts
i ∈ Tg with MIL in Eq. 7 and max-margin training of wa are coupled,

min
wa,wg,pi

∑
a

{
‖wa‖2 + Ca

∑
j

`(yj,aw
>
a qj)

}
+
∑
g

{
‖wg‖2

+ Cg

[∑
i∈Tg

pi`(w
>
g fi) +

∑
i∈Ng

`(−w>g fi)
]
− T

∑
i∈Tg

H(pi)
}
, (9)

s.t.
∑
i∈Tg

pi ≥ ρ|Tg|,∀g ∧ pi ∈ [0, 1],∀i. (10)

The joint optimization problem in Eq. 9 is non-convex, therefore we solve it using
alternating optimization.

(i) To find the most meaningful samples in each group Tg we need to solve for the
probabilities pi, i ∈ Tg . Finding the optimal value of the Lagrangian,

min
{pi}i∈Tg

L({pi}i∈Tg
, λ) = Cg

∑
i∈Tg

pi`(w
>
g fi) + T

∑
i∈Tg

(
pi log pi

+ (1− pi) log(1− pi)
)
− λ
(∑
i∈Tg

pi − ρ|Tg|
)
, s.t. λ ≥ 0, (11)
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5 Activities 6 Activities
AC [19] 68.2% -
STV + MC [9] 65.9% -
RSTV [10] 67.2% 71.2%
RSTV + MRF [10] 70.9% 82.0%
AC (Unary) [18] 68.8% 81.5%
AC + Track Cues [18] 70.9% 83.7%
AC + Frame + Track Cues [17] 72.0% 85.8%
Unified Track. + Recognit. [7] 74.4% -
Latent Constituents 74.1% 89.2%
Latent Constituents + Dense Traject. 75.1% 90.1%

Table 2: Comparison of the state-of-the-art methods for group activity recognition on
5-class and 6-class datasets [9, 10]. Our latent constituents achieve best performance of
89.2% on the 6-class dataset (a gain of 3.4% over state-of-the-art [17]), and its perfor-
mance on 5-class dataset has a comparable performance of 74.1% to the state-of-the-art
[7] using standard features and performance increases to 90.1% and 75.1% respectively
with dense trajectories [32].

together with the Karush-Kuhn-Tucker conditions following from Eq. 10, the solution
can be derived in analytical form

pi = σ
(
−
Cg`(w

>
g fi)

T

)
·max

(
ρ|Tg|

{∑
i∈Tg

σ
(
−
Cg`(w

>
g fi)

T

)}−1
, 1
)
,∀i ∈ Tg, (12)

where σ(x) =
(
1 + exp(−x)

)−1
is the sigmoid function.

(ii) Now we can discuss the training of constituent classifiers wg . Note from Eq.
5 that the score function related to person j can be written in linear form qj(m, g) =
w>g fi∗g , where i∗g = argmaxi∈Nj,m

w>g fi. By concatenating the features fi∗g over all
neighbors m into a matrix Fj the score vector becomes qj = F>j wg . The constituent
classifier is solved as a convex optimization problem using ILOG CPLEX solver for the
problem

min
wg

‖wg‖2 + Cg

[∑
i∈Tg

pi`(w
>
g fi) +

∑
i∈Ng

`(−w>g fi)
]
+ Ca

∑
j

`
(
yj,aw

>
g (Fjwa)

)
.

(13)
(iii) Based on pi and wg , optimizing wa becomes a multi-class linear SVM problem

of the same formulation as [6], which is solved using LIBLINEAR,

min
wa

∑
a

‖wa‖2 + Ca

∑
j

`(yj,aw
>
a qj). (14)

We alternate between these three steps until convergence that is typically achieved
within on the order of ten iterations. Visualization of the learned latent constituents
for a benchmark set that we use in our experiments is given in Fig. 3.
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Fig. 5: Visualization of detected latent constituents of two example group activities.
Detected parts that correspond to the same latent constituent are framed in the same
color. Each part is then visualized by averaging over the training patches that define the
latent constituent.

4 Experimental Results

4.1 Experimental Protocol

We evaluate our approach on two standard benchmark sets for group activity recog-
nition that were recently proposed in [9, 10]. Both datasets are recorded with a hand-
held camera in realistic indoor and outdoor environments. Popular action recognition
datasets such as KTH, Weizmann, Hollywood or UCF Sports are not appropriate for
evaluation, since they contain only isolated human actions, but not any group activity.

The first benchmark set [9] consists of 44 videos showing 5 group activities (cross-
ing, standing, queueing, walking, and talking). The length of videos ranges from less
than 100 frames to more than 2000 frames. The second benchmark set [10] contains 72
videos and involves 6 group activity classes. This dataset is created by augmenting the
first dataset, adding dancing and jogging and removing walking categories. We follow
the common experimental protocol [21, 17, 18, 7] that provides bounding boxes for per-
sons in the training set with corresponding group activity labels and uses a leave-one-out
framework for testing. To assess localized group activity recognition performance, we
follow the standard protocol and evaluate on a per-bounding-box level.

Following recent practice in the group activity recognition literature [7, 8], we use
the combination of HOG [11] and bag-of-feature (BoF) [12] features to represent the
constituents of group activities, c.f. Sect. 3.1. We also adhere to a common practice in
group activity recognition [7, 17] that associates object detections from different frames
of a video by object tracking. Learning begins by randomly sampling (Eq. 1) 10000
parts from training person bounding boxes. The functional grouping of Sect. 3.1 then
creates G = 100 constituents. Max-margin MIL training learns the importance wa of
each constituent for group activity recognition. Constituents with small value in the
activity classifier wa can be skipped during inference. The number of constituents that
is used for testing is chosen so that 80% of the classifier’s energy ‖wa‖2 is retained.



12 Borislav Antic and Björn Ommer

Latent Constituents

Latent Constituents

Baseline

Baseline

Fig. 6: Visualization of the classification results on test videos comparing our latent
constituent model and the baseline approach that uses bounding boxes as is common
but no further constituents. Frames are taken from the test videos.

Typically around 50 constituents are retained after such selection process, which is why
we observed only little influence when changing G.

4.2 Group Activity Recognition

Fig. 5 shows latent constituents for two example group activities (dancing and jogging).
Different colors represent different latent constituents. Moreover, each constituent is
visualized by averaging the training patches that defined it during learning.

Table 1 presents the results of group activity recognition on the benchmark sets. We
compare our latent constituent approach to the baseline method that does not use any
latent constituents, but is merely based on the whole bounding box of a person as in
other activity approaches such as [18, 19]. Our method achieves a gain of 3.7% over the
baseline for the 5-class dataset, and 5.9% for the 6-class dataset. We also compare our
latent constituents found by functional grouping and MIL with the baseline approach
of performing visual clustering, i.e., directly clustering the part feature vectors. Our
method achieves an improvement of 2.4% over the visual grouping method for the 5-
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Fig. 7: Sampling parts and reconstructing (explaining) them from the training parts that
belong to the same constituents as the original part. Samples are taken from waiting,
crossing and walking activities.

class dataset, and 1.8% on the 6-class dataset. We also conduct an experiment in which
we update the standard feature representation used for the latent constituents with recent
dense trajectory features [32]. We obtain an increase in the performance and achieve
75.1% for the 5-class dataset and 90.1% for the 6-class dataset.

Per-category classification results of our latent constituent method based on stan-
dard features on the two benchmark sets are given in confusion matrices of Fig. 4a and
4b. We notice that the greatest confusion is between walking and crossing activities,
because they have many constituents in common. Talking activity is also often miss-
classified as queueing because of their similarity.

We next compare our performance with other state-of-the-art results in Table 2. Our
method achieves an average accuracy of 74.1% on the 5-class dataset, that is almost the
same as the best performing method [7] that uses additional manual labels. Our method
achieves 89.2% on the 6-class dataset, which is 3.4% better than the state-of-the-art.
The visual results of our group activity classification and of the baseline method are
shown in Fig. 6.

Activity Reconstruction with Latent Constituents: Fig. 2 shows reconstructions
provided by groups of parts obtained by functional grouping with those coming from
groups of parts obtained by clustering with visual similarity, i.e., clustering the part ap-
pearance features. Fig. 7 presents additional reconstructions for person bounding boxes
in several activity classes: crossing, waiting and walking. Each image part is replaced by
a randomly sampled part from the training set that belongs to the same constituent as the
original image part. The final reconstructed image is obtained by averaging. Again one
can see that key characteristics of an activity class are captured by latent constituents.

5 Conclusion

This paper has demonstrated that activity recognition significantly benefits from mod-
eling human behavior using a large number of semi-local parts and their interaction be-
tween persons. Learning the underlying classifier becomes feasible by grouping func-
tionally related parts into activity constituents and removing clutter with multiple in-
stance learning while training constituent classifiers and the multi-class activity model.
The approach has shown a significant performance gain on standard activity bench-
marks.
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