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Abstract. Multiple-instance learning consists of two alternating opti-
mization steps: learning a classifier with missing labels and finding the
missing labels with the classifier. These steps are iteratively performed on
the same training data, thus imputing labels by evaluating the classifier
on the data it is trained upon. Consequently this alternating optimiza-
tion is prone to self-amplification and overfitting. To resolve this crucial
issue of popular multiple-instance learning we propose to establish a ran-
dom ensemble of sets of bags, i.e., superbags. Classifier training and label
inference are then decoupled by performing them on different superbags.
Label inference is performed on samples from separate superbags, and
thus avoids label imputation on training samples in the same superbag.
Experimental evaluations on standard datasets show consistent improve-
ment over widely used approaches for multiple-instance learning.

1 Introduction

Over the last decade machine learning has come a long way in proposing novel
training scenarios that are suited for new applications where the classical su-
pervised learning is not feasible. Of particular importance is the framework of
multiple-instance learning (MIL), both from the theoretical and practical point
of view. In contrast to standard supervised learning where all training samples
are provided with labels, pattern labels in MIL are unknown and need to be
discovered during training. MIL accommodates the training patterns in bags,
and the training labels are only provided at the bag level.

The MIL framework has been successfully applied in many practical problems
because it provides a powerful mechanism to deal with label ambiguities that are
common in weakly annotated datasets. After initial application of MIL to drug
activity prediction [1], the concept of MIL has quickly spread to many other
disciplines such as text-categorization [2] and computer vision. Many authors
used MIL for image retrieval [3, 4], image categorization [5] or object detection
[6]. Object tracking has also greatly benefited from the MIL setup [7, 8], which
seamlessly picks among many ambiguous patches one that best represents the
object and uses it for the update of the appearance model.

In order to learn a classifier in the presence of ambiguous labels, MIL proceeds
by iterating between learning a classifier and finding the missing labels in an
alternating fashion. However, the two steps are performed on the same training



2 Borislav Antić and Björn Ommer

samples, which renders classifier learning and label inference prone to overfitting
and increases the variance of the estimates for the unknown labels.

So how can we resolve these issues and increase the robustness of MIL? First,
we should avoid predicting the labels for the same instances that the classifier
is trained upon. Second, we can decrease the uncertainty of label inference by
averaging over multiple predictions from separate classifiers. These goals can
be addressed by establishing a random ensemble of sets of bags, that we call
superbags. Training a classifier on a superbag, predicting labels for elements from
other superbags, and averaging all these predictions decouples classifier training
and label inference and, thus, increases the robustness of MIL. We believe that
the proposed approach is of general interest to many methods that employ the
idea of MIL. The approach is easy to integrate to existing MIL methods, and its
results show a consistent gain over baseline methods which train the classifier
and predict the labels on the same patterns.

Training a classifier with missing labels also appears in semi-supervised learn-
ing, where it is addressed by co-training [9]. In co-training, two classifiers are
trained on the same labeled set of points, but with different features. The clas-
sifiers then predict labels of a large unlabeled set of points. Patterns that are
confidently labeled by either of the classifiers are appended to the training set
of both classifiers. So the two classifiers are always updated with the same set
of training points. Confident label predictions of one classifier are used during
co-training to resolve ambiguities about unlabeled patterns of the other clas-
sifier. Different from the concept of co-training, our superbag approach trains
the classifiers on the same features, but using different data points. Superbag
classifiers are all trained on the same features, since in many applications finding
new independent features is not feasible. Usually, it is not possible to change the
feature representation of the given data. Training classifiers on the same data,
as performed by co-training, makes the classifiers dependent on each other and
their training less robust. Our superbag approach trains the classifiers on dif-
ferent data points which lowers the variance of inferred labels and increases the
robustness of the classifiers. Superbag classifiers are trained only from weakly
labeled points, whereas in co-training the classifiers are trained initially on the
fully labeled set of points. Roth et al. [10] recently applied the MIL algorithm
with co-training to the problem of multiple-camera object detection. They ap-
ply MIL algorithm alongside with co-training to detect image regions that most
likely represent an object.

Classifying data patterns with multiple classifiers is also part of the bagging
method [11]. Bagging makes several training sets by sampling them with re-
placement from the original set of points. These sets are then used for training
the ensemble of classifiers, which later jointly classify new test points. In bag-
ging, test labels are obtained by averaging the predictions from all classifiers in
the ensemble. However, bagging can be applied only in the supervised setting,
where the labels of training instances are all provided. In contrast, our superbag
ensemble is trained on weakly labeled patterns, where finding the missing la-
bels and training the classifiers are performed simultaneously. Besides, in our
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Fig. 1. Sketch of the processing pipeline for decoupling classifier training and label
inference by performing them on different superbags.

superbag approach the ensemble of classifiers is used only during training to ro-
bustly resolve the missing labels, whereas in bagging the ensemble of classifiers is
used only for testing. After inferring the missing labels of training instances, our
superbag method trains the final classifier that predicts labels of test samples.

In Sect. 2 we review MIL before presenting our contribution in Sect. 3 that
extends MIL algorithms with an ensemble of superbags. We continue in Sect. 4
to present instantiations for the various MIL methods extended by the concept of
superbags. Sect. 5 analyses how ensemble of superbags reduces the uncertainty of
label prediction in MIL and we perform an experimental evaluation on standard
datasets in Sect. 5.2 before concluding in Sect. 6.

2 Multiple-Instance Learning

In a standard supervised setting, one is given a training set that consists of
labeled patterns (xi, yi) ∈ Rd×Y, and the goal is to learn a classifier f : Rd → Y,
i.e. a function that maps patterns to labels. Multiple-instance learning is dealing
with pattern labels in a weakly supervised way. Labels are provided only for
sets of instances that are called bags. Each bag BI is specified by an index set
I ⊆ {1, 2, ..., n}, i.e. BI = {xi : i ∈ I}. Multiple-instance learning is defined
on the finite set of bags {BI}I∈Ĩ , where family of index sets Ĩ ⊆ 2{1,2,...,n} is a
subset of the power set of set {1, ..., n}. There are in total m bags in the dataset,
i.e. |Ĩ| = m. A label YI is associated with each bag BI , and they are defined in
the following way. Patterns in the negative bag all belong to the negative class,
YI = −1 ⇒ ∀i ∈ I : yi = −1. On the other hand, a bag with positive label
requires that at least one of the patterns of the bag belongs to the positive class,
YI = 1⇒ ∃i ∈ I : yi = 1. The goal of MIL is to simultaneously find the missing
pattern labels yi and the instance classifier f . Finding the unknown pattern
labels is also known as imputation step. Imputed labels have to satisfy MIL
constraints that express the relation between bag labels YI and corresponding
instance labels yi, i.e. YI = maxi∈I yi.
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Due to label ambiguity in positive bags, the learning problem is naturally
defined as a mixed integer problem. In case of a linear discriminant function
f(x) = w>x, one is looking for the weight vector1 w ∈ Rd, together with un-
observed integer variables yi that are missing instance labels in positive bags.
Inferring the missing labels is a hard combinatorial problem that is usually solved
with alternating optimization. It consists of the two steps: (i) inferring the labels
- given the discriminant function, find the integer variables yi that correspond
to the unknown pattern labels in positive bags, (ii) classifier learning - given the
inferred instance labels from the previous step, find the optimal parameter w of
the discriminant function. These two steps are performed on the same patterns
simultaneously, which means that the same instances are used for both training
the discriminant function and imputing the missing labels. So for inferring the
missing labels the classifier is evaluated on the same samples it was trained upon,
which makes MIL susceptible to overfitting.

3 Multiple-Instance learning with Superbags

In the widely employed multiple-instance learning framework discriminative learn-
ing and label inference are always performed on the same training samples, which
makes the learning algorithm susceptible to overfitting, and, as a consequence,
increases the variance of instance label prediction. Our approach improves the
robustness of multiple-instance learning by decoupling the training of discrimi-
nant function and the inference of pattern labels. Key steps of MIL algorithm are
performed on separate bags with their results combined at the end in the final
classifier. We show that by using separate sets of bags for classifier training and
label inference, the final classifier can obtain a lower error in predicting unknown
instance labels. With respect to the well-known bias-variance decomposition of
the mean squared error, integration of superbags into MIL decreases the variance
of label predictions without increasing the bias. Superbags slightly prolong the
training time for MIL, but the time for testing stays the same. In the sequel we
explain how label inference and classifier training steps become separated when
the superbags are integrated into MIL.

As stated above, the goal of multiple-instance learning is to simultaneously
find the optimal pattern labeling yi and the optimal discriminant function f .
If we knew the correct classifier f(x) = w>x, unknown labels could be found
by assigning all patterns to positive or negative class based on the sign of the
discriminant function, ŷi = sgn f(xi). However, the discriminant function is un-
known and it needs to be learned from the training samples whose labels are
unknown. In the course of multiple-instance learning, the unknown instance
labels yi, and the classifier hyperplane w are simultaneously updated. Labels
yi ∈ {−1,+1} should ideally match the labels assigned to instances xi by the
classifier w. Optimal values of labels yi are obtained by minimizing the loss func-
tion `(xi, yi, w) that measures the discrepancy between the labels and classifier

1 Offset w0 of the discriminant function is included in the weight vector w.
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predictions. Estimated labels also have to satisfy the MIL constraints defined on
both positive and negative bags,∑

i∈I

yi + 1

2
≥ 1, if YI = 1, (1)

∧ ∀i ∈ I : yi = −1, if YI = −1. (2)

In the baseline MIL setup, the classifier w is chosen from a set of well-behaved
functions that is defined by a regularizer Ω(w). A good classifier needs to produce
accurate predictions on the training points. The discrepancy between instance
labels and predictions made by classifier is measured by the empirical loss func-
tion Remp(w). This function is the sum of loss functions at all training points,
Remp(w) :=

∑n
i=1 `(xi, yi, w). The classifier w is then found by minimizing the

weighted sum of the regularizer Ω(w) and the empirical loss function Remp(w),

ŵ = argmin
w

Remp(w) + λΩ(w). (3)

As both the pattern labels and the classifier hyperplane are updated on the
same data, the two processes become strongly entangled, which increases the
error of label predictions. The mean squared error (MSE) of label prediction
in point xi is the average squared difference between the prediction ŷi and the
ground truth label yi, i.e. MSE = E{(ŷi − yi)2}. MSE can be decomposed into
the squared bias b2 = (E{ŷi} − yi)2 and the variance σ2 = E{(ŷi − E{ŷi})2}.
The bias is a measure of systematic error in label prediction that gets larger
as the model becomes less flexible. On the other hand, variance quantify how
much the predicted value varies around the average prediction. Overly flexible
models have high variance, because they easily overfit to the particular dataset.
We measure MSE and variance of our superbag based MIL classifier in Sect. 5.1
by computing the average error of label predictions on a fixed set of test points.

A natural question is whether we can avoid overfitting by decreasing the
variance of label predictions that will then lead to a more robust model that
better generalizes to new samples. Our solution (illustrated in Figure 1) is based
on two observations: (i) overfitting can be avoided if the labels are predicted
by classifiers that are not trained on the same training samples, and, (ii) the
variance of label predictions can be decreased by averaging over predictions of
multiple classifiers. We show that both of these requirements can be satisfied if
we randomly separate all training bags into multiple sets of bags - superbags.
We train a classifier on each superbag and use it to predict labels of patterns
that lie in other superbags. This way, we decouple the training of the classifier
and the inference of missing labels. Moreover, for each unknown label we obtain
a number of predictions from different classifiers in the ensemble, that allows
us to average all predictions and obtain a lower variance for imputed labels. In
contrast to the standard problem of model selection where the variance is traded
off against the bias, in our case the bias is not increased, because we use the
classifier of the same complexity throughout all experiments. We illustrate this
in Sect. 5.1 that analyzes the uncertainty of label prediction in MIL.
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As indicated above, superbags are generated by random sampling from the
set of all training bags. We create an ensemble of superbags {SI}I∈Î , where each
superbag is defined as a set of bags, SI = {BI : I ∈ I}. The family of superbag

indexes Î ⊆ 2Ĩ is finite, and it is a subset of the power set of the index family
Ĩ. Let k denote the total number of superbags, |Î| = k. Superbags are created
by sampling bags with replacement, otherwise classifiers would be trained on
too few training bags in superbags. Consequently, superbags might overlap, i.e.
superbag index sets I ∈ Î are in general not disjoint. Size of a superbag is set
to the fraction r of the total number of bags in the dataset, i.e. ∀I ∈ Î : |SI | =
r · |Ĩ|. A separate classifier fI is trained on each superbag SI , i.e. a hyperplane
wI is learned only from patterns that belong to superbag SI . The hyperplane
wI is selected from a set of well-behaved functions that are determined by the
regularizer Ω(wI), and it also has to fit well to the training data in the superbag
SI . This is quantified by the superbag empirical loss function,

Remp(wI) :=
∑
I:I∈I

∑
i:i∈I

`(xi, yi, wI). (4)

New classifier is found by minimizing the weighted sum of the regularizer and
the superbag empirical loss function,

ŵI := argmin
wI

Remp(wI) + λΩ(wI). (5)

Our goal is to decouple the inference of missing instance labels yi from the
training of the ensemble of classifiers wI . Therefore, ideally label yi of pattern
xi is estimated only by classifiers that are trained on superbags which do not
contain the point xi. However, in order to provide numerical stability of the iter-
ative procedure, we also include predictions made by classifiers that are trained
on xi, but these predictions are then given a smaller weight β, whose value is
determined in cross-validation. Consequently, the labels yi are inferred by the
following optimization,

ŷi = argmin
yi

∑
I:i/∈I

`(xi, yi, wI) + β
∑
I:i∈I

`(xi, yi, wI), (6)

subject to the general MIL constraints defined earlier in Eq. 1 and 2. Note that
standard MIL is a special case of superbag MIL when k = 1 and r = 100%, i.e.
when there is only one superbag which contains all the training bags. In that
case, only the second term remains in Eq. 6.

4 Integrating Superbags into Common MIL Approaches

In this section we show how the concept of superbags can be easily integrated into
some of the most popular instance-level classifiers for MIL that are based upon
the standard soft-margin SVM formulation [2, 12]. In particular, we choose the
methods AL-SVM, AW-SVM and ALP-SVM proposed by Gehler and Chapelle
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[12], because they generalize the widely employed mi-SVM and MI-SVM methods
[2] used in many different applications. In Sect. 4.1 - 4.3 we show how to integrate
the concept of superbags into the methods of AL-SVM, AW-SVM and ALP-
SVM, respectively.

4.1 AL-SVM with Superbags

AL-SVM [12] improves the very popular mi-SVM method [2] using the deter-
ministic annealing (DA). DA is a general method for solving non-convex dis-
crete optimization problems, such as ŷ = argminy∈{−1,1}n J(y), that treats the
unknown discrete variable y as binary random variable with unknown discrete
distribution p. Gehler and Chapelle [12] assume that the probability distribu-
tion of missing instance labels y in the mi-SVM method can be factorized into a
product of marginal probabilities pi = P (yi = +1). In order to incorporate the
MIL constraints, probabilities of all patterns in negative bags are set to zero,
pi = 0. For each positive bag BI , there is at least one positive pattern, thus a
constraint

∑
i:i∈I pi ≥ 1 is imposed.

The concept of superbags can be easily integrated into the AL-SVM algo-
rithm. An ensemble of classifiers wI is trained on all patterns from a superbag
SI by minimizing the regularized empirical loss,

ŵI = argmin
wI

Remp(wI) + λΩ(wI), (7)

with the empirical loss function

Remp(wI) :=
∑
I:I∈I

∑
i:i∈I

(
pi`(xi, yi = +1, wI) + (1− pi)`(xi, yi = −1, wI)

)
. (8)

In contrast to Eq. 4 that operates on deterministic label assignments yi,
Eq. 8 contains the expectation of the empirical loss, because missing labels are
now treated as binary random variables. In case of the quadratic regularizer
Ω(wI) = 1

2‖wI‖
2 and the standard hinge-loss function `(xi, yi, wI) = max

(
0, 1−

yi ·(w>I xi)
)
, the optimization problem reduces to a quadratic program (QP), that

can be solved using standard solvers.
In the label inference step of our superbag-enhanced AL-SVM, label probabil-

ities pi are updated by minimizing the weighted sum of empirical losses incurred
by superbag classifiers,

p̂i = argmin
pi

∑
I:i/∈I

(
pi`(xi, yi = +1, wI) + (1− pi)`(xi, yi = −1, wI)

)
+

β
∑
I:i∈I

(
pi`(xi, yi = +1, wI) + (1− pi)`(xi, yi = −1, wI)

)
− T ·H(pi). (9)

The entropy function H is used by DA to regularize the label inference. For a
standard hinge-loss function, the solution can be obtained in a closed form, by
transforming the MIL constraints into the Lagrangian dual and applying the
Karush-Kuhn-Tucker theorem.
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4.2 AW-SVM with Superbags

Superbags can be also successfully integrated into the AW-SVM method [12].
The AW-SVM algorithm uses DA to find solution to MI-SVM [2], which tries
not infer all missing labels, but only those that are witnesses of the unknown
target concept in positive bags. The AW-SVM method finds the distribution
over patterns in positive bag, i.e. it calculates the probability pi that an instance
xi is a witness in its bag. The sum of probabilities in each bag has to be one,∑

i:i∈I pi = 1. In negative bags, all patterns are treated as negative witnesses,
since their labels are known to be negative.

AW-SVM can integrate easily the concept of superbags. A classifier wI is
trained only on samples from the superbag SI , which is achieved by minimizing
the regularized expected empirical loss function,

ŵI = argmin
wI

Remp(wI) + λΩ(wI), (10)

with the expected empirical loss function

Remp(wI) :=
∑
I:I∈I

∑
i:i∈I

pi`(xi, yi = YI , wI). (11)

For the quadratic regularizer and the hinge-loss function, the optimization in
Eq. 11 is a standard QP that can be solved by standard solvers.

The inference step in our superbag extension of AW-SVM finds the proba-
bility pi that pattern xi is the witness in its bag. This amounts to minimizing
the expected empirical loss given the general MIL constraints as before,

p̂i = argmin
pi

∑
I:i/∈I

pi`(xi, yi = YI , wI) + β
∑
I:i∈I

pi`(xi, yi = YI , wI)− T ·H(pi)

(12)

The solution of the inference problem for the standard hinge-loss function can
be easily obtained starting from the Lagrangian dual.

4.3 ALP-SVM with Superbags

The mi-SVM algorithm is initialized by labeling all patterns of a positive bag as
positive. As a result, the mi-SVM method overestimates the number of positive
patterns in a positive bag and the optimization gets easily trapped in a local
optima. However, DA does not label too many patterns positively, but it suffers
from relatively mild MIL constraints that ask for at least one positive pattern
in a positive bag. Typically, only few patterns in a positive bags are labeled as
positive. In order to alleviate the problem, Gehler and Chapelle [12] proposed
to add a term to the MIL objective, that plays a similar role as the balancing
constraint in the semi-supervised learning. Balancing term penalizes the large
deviation from the expected number of positively labeled points in a positive
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bag, that is assumed to be the αI fraction of the total number of patterns in the
bag I.

The balancing term
∑

I(
∑

i∈I pi − αI |I|)2 does not depend on the parame-
ters wI of the ensemble of superbag classifiers. Therefore, the classifiers can be
trained in the same way as in Eq. 7. However, the label inference step is changed
by the addition of the balancing term, and it has now the following form,

p̂i = argmin
pi

∑
I:i/∈I

(
pi`(xi, yi = +1, wI) + (1− pi)`(xi, yi = −1, wI)

)
+

β
∑
I:i∈I

(
pi`(xi, yi = +1, wI) + (1− pi)`(xi, yi = −1, wI)

)
+ γ

∑
I

(∑
i∈I

pi − αI |I|
)2 − T ·H(pi). (13)

5 Experimental Evaluation

In the experimental section, we evaluate how integrating superbags improves
MIL by decreasing the variance of label predictions and avoiding overfitting.
In Sect. 5.1 we first analyze the uncertainty of label predictions in a synthetic
experiment, and in Sect. 5.2 standard MIL benchmark datasets are used to
measure the performance gains after integrating the ensemble of superbags into
some popular MIL methods that are used as baselines. Finally, in Sect. 5.3
we show how performance of the MIL based image re-ranking system can be
improved if the concept of superbags is applied to it.

5.1 Analyzing the Uncertainty of Label Predictions in MIL

A synthetic experiment is created in order to analyze the uncertainty of label
predictions in MIL. The dataset consists of m = 100 bags, where each bag
has five points sampled from a unit square in the plane. The diagonal of the
square separates the positive and the negative class. 30 bags are sampled strictly
from the negative class (negative bags), while other bags are sampled from both
classes. Baseline MIL algorithm in this experiment is mi-SVM, which infers the
missing labels for all training instances. The mi-SVM algorithm can be obtained
from AL-SVM by setting the temperature T to zero. We integrate the idea
of superbags into the baseline mi-SVM method. Ten superbags are created by
random sampling, with their size being changed from r = 10% to r = 100% in
an increment of 10%. We note that superbags of the maximal size r = 100%
both train the classifiers and find the missing labels on all the training data at
once, which corresponds to the baseline mi-SVM method. We use linear SVM
classifier and fix the hyperparameters to C = 20 and β = 0.5.

The averaged results over five hundred independent runs are given in Fig.
2. It shows the uncertainty of label predictions measured by the mean squared
error (MSE), and its two components, variance and squared bias, that were
discussed in Sect. 3. All three quantities are normalized with respect to the mean
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Table 1. The classification error (%) on five different MIL benchmark datasets. We
compare the performance of methods AL-SVM, AW-SVM and ALP-SVM when they
use superbags to their baseline versions that are without superbags. In all cases, a
consistent improvement in performance is achieved. The standard deviation for baseline
is around 3.5% and 3.1% for superbags.

Dataset EMDD mi-SVM MI-SVM MILIS AW - SVM AL - SVM ALP - SVM

[3] [2] [2] [13] B/L Superbags Gain B/L Superbags Gain B/L Superbags Gain

Musk1 15.2 12.6 22.1 11.4 14.3 14.2 +0.1 13.3 13.1 +0.2 13.7 12.1 +1.6
Musk2 15.1 16.4 15.7 8.9 16.2 13.8 +2.4 17.4 17.4 0 13.8 13.4 +0.4
Tiger 27.9 21.6 16 N/A 17 14.5 +2.5 21.5 16.5 +5 14 14 0
Elephant 21.7 17.8 18.6 N/A 18 17.5 +0.5 20.5 17.5 +3 16.5 16 +0.5
Fox 43.9 41.8 42.2 N/A 36.5 33 +3.5 36.5 33 +3.5 34 31 +3

squared error of the baseline mi-SVM method. The baseline method is obtained
for r = 100%. The variance quantifies how much the model is susceptible to
overfitting. We see that by decreasing the size of superbags r, the variance of
label predictions decreases, because overfitting becomes less prominent. This is
a direct consequence of the decoupling of label inference and classifer training
when the size of superbags is decreased. In this experiment, the changes of bias
are smaller than the changes of variance. This is because the complexity of the
original SVM classifier is not changed. The percent of reduction of MSE with
respect to the baseline performance is shown on the right of Fig. 2. We see
that the prediction error is always lower than in the baseline, and the maximal
reduction is achieved for the superbag size of r = 40%. The error rate in that
case drops by approximately 35%.

5.2 Evaluation on Benchmark Datasets

In this section, we evaluate the proposed concept of superbags on the benchmark
datasets for MIL. The ensemble of superbags is integrated with the popular AL-
SVM, AW-SVM and ALP-SVM algorithms proposed by Gehler and Chapelle
[12], and the results are compared to their baseline versions that do not use
superbags. The benefit of these classifiers is that they can resolve ambiguous
instance labels jointly with bag-level classification. Moreover, mi-SVM-like clas-
sifiers are quite popular in the MIL literature, and have found a wide use in
computer vision. We compare our results also to the bag-level classifiers [13],
which predict only bag labels using rich bag-level features, but do not infer
missing instance labels, and are, thus, not applicable for many applications.

We use the well-established benchmark sets, MUSK [1] (Musk1 and Musk2)
and COREL [2] (Tiger, Elephant and Fox), for the comparison of MIL algo-
rithms. We follow the experimental setup of Gehler and Chapelle [12], and use
SVM classifier with RBF kernel whose bandwidth σ and parameter C are selected
from the sets σ ∈ { 0.5σ0, σ0, 2σ0} and C ∈ {1, 10} by tenfold cross-validation.
The value of σ0 is computed as the median of pairwise distances of all training
samples. The balance term α in ALP-SVM is selected by cross-validation from
the set α ∈ {0.1, 0.2, ..., 1.0}. AL-SVM and AW-SVM are performed without an-
nealing, because, as noted by Gehler and Chapelle [12], annealing in their case
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Fig. 2. Analysis of the label prediction errors in the synthetic experiment. Fig. (a)
shows the mean squared error (MSE) and its two components, variance and squared
bias, when the size of superbags r is changed. All quantities are normalized with respect
to MSE of the baseline mi-SVM method (r = 100%). Fig. (b) shows in percents the
reduction of the mean squared error with respect to the baseline mi-SVM method.
The largest decrease of the prediction error (35%) is obtained for superbags of the size
r = 40%.

does not translate into a smaller test error. Consequently, annealing sequence is
only applied to ALP-SVM, where it starts from the temperature T = 10C and
is decreased at the rate of 2/3 per round.

We integrate the idea of superbags into three standard MIL algorithms, AL-
SVM, AW-SVM and ALP-SVM, and compare the results with their baseline
versions that do not use superbags. We sample randomly k = 10 superbags. We
select superbag size r from the set r ∈ {20%, 50%, 80%} and β ∈ {0.5, 1, 2} by
cross-validation. Superbag size r is the fraction of the total number of bags in
the dataset. The best performance is typically obtained for β = 0.5, i.e. instance
labels are strongly predicted by classifiers trained on different superbags.

The results of testing on MIL benchmark datasets are given in the Tab.
1. Classification error of superbag concept integrated into AL-SVM, AW-SVM
and ALP-SVM methods is compared with their baseline version that do not use
superbags. It is evident that the introduction of superbags to the standard MIL
methods consistently improves the their baseline versions. The AL-SVM method
achieves the gain of +5% on the Tiger dataset when superbags are used. The
AW-SVM method show the gain of up to +3.5% on the Fox dataset. Lastly, the
the ALP-SVM approach shows an improvement of +3% on the Fox dataset.

Tab. 1 also provides the results of other MIL methods, namely EMDD [3],
MILIS[13], MI-SVM [2] and mi-SVM [2]. Our integration of the ensemble of su-
perbags into ALP-SVM achieves the best score on all three COREL datasets,
Tiger, Elephant and Fox. The results on the Tiger dataset are equal to the
baseline ALP-SVM method. The superbags also significantly improve the per-
formance of baseline methods on the MUSK datasets. On the Musk1 dataset,
the performance of ALP-SVM after integration with superbags is on par (< 1%
difference) with MILIS [13], the state-of-the-art method for the MUSK bench-
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mark. Good performance of MILIS on Musk2 dataset is due to the rich bag-level
features that MILIS as a bag-level classifier uses. As a consequence, bag-level
classifiers are however limited in that they do not infer missing instance labels.
By integrating superbags into the instance-level classifiers, their bag-level classi-
fication performance approaches the performance of the state-of-the-art bag-level
classifiers, which are inferior in terms of the labels they can infer.

5.3 Image Re-Ranking Using Superbag MIL

As our last experiment, we apply our superbag enhanced MIL framework to the
problem of web image re-ranking. Recently, several groups proposed MIL as a
ranking framework [14, 4], that is particularly suitable for the re-ranking of web
image search results.

The Google data set was proposed originally by [15] to enhance the learning
of object categories from web image search results. The dataset consists of about
4000 images divided into 7 categories that have on average 600 images. Since
images are taken from a text based search, only around 30% of images are with a
“good” view of the desired class, 20% are “ok” views, whereas the remaining 50%
of images are considered as ”junk” images, as they are completely unrelated to
the category. In order to apply MIL, the images need to be grouped into multiple
bags beforehand. Positive bags are obtained by randomly sampling images that
are returned as a search result for given category. If the group is large enough,
it can be assumed that at least one image in a bag will be positive. Negative
images are obtained by sampling only images from other categories. The seven
categories used in the Google dataset are airplane, car (rear), face, leopard,
motorbike, guitar and wrist watch.

In order to build a feature representation for images in the Google dataset, we
densely sample features around edges at multiple scales. Extracted features are
represented by the SIFT descriptor. Our method for feature sampling is simpler
than that described in [14, 15], where four interest point detectors are used,
i.e. Kadir&Brady operator, Harris-Hessian detector, difference of Gaussians and
Edge-Laplace detector. SIFT descriptors are quantized into a codebook of 500
visual words. Each image is represented as a bag of words (BoW), i.e. a histogram
of visual words in that image. We use mi-SVM as a baseline for re-ranking of the
Google images and compare it to our superbag approach that is integrated with
the mi-SVM algorithm. In both cases an SVM with RBF kernel is employed and
the kernel bandwidth is set to 4/A, where A is the mean squared distance between
images. All bags are of the same size of 15 images. We use 5 superbags where
each superbag consists of 40 bags. Following [14, 4] the per-category precision
at 15% recall is measured for performance evaluation. Both “good” and “ok”
images are treated as positive samples in the experimental evaluation.

The results of the per-category and mean precision at 15% recall are provided
in Tab. 2. Both, baseline mi-SVM and superbag enhanced mi-SVM consistently
improve the results of Google’s original web image search over all categories. We
also see that superbag enhanced mi-SVM achieves significant improvement over
the baseline mi-SVM on four out of seven categories. For airplane category this
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Table 2. Per-category precision and the mean precision (%) at 15% recall over 7 cat-
egories of the Google dataset. The abbreviations are for the category names: Airplane
(A), Cars-rear (C), Face (F), Guitar (G), Leopard (L), Motorbike (M) and Wrist-watch
(W).

A C F G L M W Mean

Google [15] 70.00 69.49 43.82 56.58 66.07 72.53 88.89 66.77

mi-SVM [2] 50.72 64.06 86.67 84.31 64.91 83.54 93.02 75.32

Superbags 76.09 71.93 82.98 82.69 78.72 80.49 97.56 81.50

WsMIL [4] 100 81 57 52 66 79 95 75.71

Schroff [16] 58.5 N/A N/A 70.0 49.6 74.8 98.1 70.20

PMIL-CPB [14] 100 75.34 89.91 82.74 86.15 76.63 95.72 86.64

improvement is highest and equals approximately 25%. The gain of superbag
enhanced mi-SVM in the mean precision over the baseline mi-SVM is 6.2%. The
rest of the table shows the results of other state-of-the-art methods, i.e. WsMIL
[4], Schroff et al. [16] and PMIL-CPB [14]. The superbag enhanced mi-SVM has
the second best result of all compared methods in terms of mean precision, and
the gain over Schroff et al.’s method and WsMIL is 11.3% and 5.8%, respectively.
Only PMIL-CPB scores better by 5.1% than our superbag based approach. This
is a consequence of a stronger constraint for positive bags, which requires that
at least a portion of instances in a positive bag is positive, whereas we use a
standard MIL constraint with at least one positive instance per positive bag.
Besides, the concept of superbags can be also integrated with the PMIL-CPB
method to increase its performance.

6 Conclusion

In this paper we have addressed a fundamental issue of widely used multiple-
instance learning. In the underlying optimization algorithm, classifier learning
and inference of missing labels are iteratively performed on the same training
samples. This leads to overfitting and increases the variance of the label esti-
mates. We have tackled these issues by introducing superbags, which effectively
decouple both processes. Experiments on standard datasets have shown that
this method consistently improves several widely used approaches to multiple-
instance learning when being integrated into the optimization routine.
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