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Abstract:
The focus of the present paper is to introduce a computer-based methodology for measuring and

analyzing the variability between compositions of complete scenes and individual objects of similar
medieval manuscripts. On the level of scene compositions, we present a methodology to describe
global deformations by a novel piecewise linear registration model that adapts the complexity of each
component according to the shape deformation in the underlying region. Moreover, the assignment
of regions in a scene or object to different model components induces a clustering of the scene
which in turn helps to visualize the structure and geometry of the deformation introduced in the
reproduction by the artist. Our algorithm simultaneously infers the correspondences between original
and reproduction, finds groups in the image which share the same transformation, and finally estimates
the transformation of those groups. Information about the transformation through the illustrations of
medieval manuscripts is adjuvant for scholars to reconstruct historic context and semantic changes
and is crucial for stylistic interpretation.

1. Introduction
Cultural heritage is not only made up of innovative new art but a significant part are reproductions
of existing work and their variations. Therefore it is crucial to evaluate the quality of the reproduc-
tions of art as well as their stylistic and semantic changes. Especially the manuscript culture of
the Middle Ages flourished through manual reproductions. A prominent example is the frequently
reproduced codex of Eike von Repgow’s Sachsenspiegel composed ca. 1220-1235 in eastern
Saxony. It constitutes an outstanding piece of medieval cultural history. Eike von Repgow’s text is
one of the oldest prose works written in German and the earliest German vernacular law book and
thus an important monument in the history of German law. Only four illustrated redactions of the
text remain, these Codices picturati from the 14th century are named after their present location
in Heidelberg (H), Dresden (D), Wolfenbüttel (W), and Oldenburg (O). The focus of the present
paper is to introduce a computer-based methodology for measuring and analyzing the variability
between compositions of complete scenes and individual objects of these different manuscripts.
On the level of scene compositions, we present a methodology to describe global deformations
between scenes. Therefore, deformations are represented by a novel piecewise linear registration
model that adapts the complexity of each component according to the shape deformation in the
underlying region. Moreover, the assignment of regions in a scene or object to different model
components induces a clustering of the scene which in turn helps to visualize the structure and
geometry of the deformation introduced in the reproduction by the artist. The main challenge
consists of simultaneously solving three tasks. Firstly, the correspondences between original
and reproduction have to be inferred. Secondly, groups in the image which share the same
transformation need to be found and finally, the transformations of those groups needs to be
estimated. We propose a mathematical optimization approach capable of solving the three tasks
simultaneously.
We are going to show that both the Wolfenbüttel and the Dresden codices feature important vari-
ations. These changes occur on the level of scene arrangements as well as on single individuals
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like the magistrate. Our analysis shows that the arrangement of persons is not static but that
it changes dynamically according to the artistic and historical context in which each codex was
reproduced. Furthermore, we show how a statistical approach can be used to help art historians
to better analyze the deformations between objects.

2. Related Work
In [1] the temporal drawing process of how an image is reproduced was analyzed. It was assumed
that parts drawn in closed succession in the reproduction exhibit similar deformations between
the images. A limitation is the manual location and matching of landmark points. Furthermore,
the approach lacks a unified model since two different clustering algorithms were applied for
estimating the parameters of local affine transformations assuming perfect point correspondences,
thus, making this procedure very susceptible to noise. We address these issues in the present
contribution. The present paper formulates a single optimization problem where affine transfor-
mations are estimated and points are grouped within the same procedure.
In [2] we proposed to solve for the groups and affine transformations by formulating a single opti-
mization problem that was solved using Deterministic Annealing (DA). However, at the beginning
of the optimization procedure shape points were assigned with almost the same probability to
the initial affine transformations. Thus, after updating the transformations, all affine parameters
became equal and the algorithm got trapped in a local minimum. A further limitation, which is
also shared by [1] was the inclusion of a Euclidean distance term in the energy function to force
the compactness of the groups. Thus, a bias in the solution was introduced since groups were
clustered due to proximity and not depending on the registration quality. In [2] we also assumed
for simplicity to have fixed point correspondences between shapes and their calculation was not
related to the main optimization procedure. The current approach substitutes the DA technique
by a linear program (LP) formulation for assigning points to groups. Moreover, we eliminate the
Euclidean distance term in the energy function and groups are found only by the goodness of
registration. In addition, our method also optimizes point correspondences between shapes along
with the groups and the transformation within the same procedure.
In the field of sparse motion segmentation for instance, Wang and Adelson [3] presented a method
for decomposing videos into similarly moving layers. This method estimates affine motion models
for segments on a regular grid. Due to clutter and missing contours, accurate estimation of small
and continuous deviations in transformations cannot be estimated with this approach. In [4], a
regularized energy function was minimized with Graph-Cuts ([5]) which also included a pairwise
regularization and thus a bias in the result. This regularization led in practice to poorer registration
quality since parts in the shape belonging to different model components were mixed. Furthermore,
the authors of [6] presented a LP formulation of a central clustering in which the number of clusters
is determined indirectly by a hard to determine penalty term for each data point. Lazic et al. [7]
also indirectly determined the number of clusters through the weighting of the different randomly
subsampled linear subspaces. Normally, (rigid) motion segmentation can be seen as an application
of the more general task of subspace segmentation [7], [8]. This latter task commonly assumes
that the data points lie on several distinct linear subspaces [9], [8], [10], [11], [12]. However,
the linearity assumption does not hold in our setting: Whereas shape points lie in a 2D vector
space, each of the shape parts that were similarly altered by the artist are represented through
elements of the affine group. Therefore, the task consists not only of clustering points which define
a linear subspace but three tasks need to be solved jointly: the correspondence between both
shapes, the groups in the image which share the same transformation, and the estimation of the
transformations of those groups.
In the field of computer graphics Sýkora et al. [13] embedded each shape in a lattice consisting
of several connected squares and registered them by estimating a rigid transformation for every
square. Since the registration is only on the level of rigid squares, a grouping into flexibly shaped
regions with related modifications is not part of this contribution. Furthermore, the authors of [13]
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are not able to handle deformations which do not preserve local rigidity (e.g scaling or shear)
and it requires a significant overlap between shapes for registration. Additionally, in our setting
background clutter creates distractors that need to be handled, whereas the method of [13] is only
applied to cartoons without any clutter. Another interesting related work is [14], which presented
a piecewise affine regularization method for medical image registration. The drawback of this
method is that the affine-registered areas need to be estimated manually by the user. Related
to piecewise affine registration, the authors of [15] recently introduced a matching algorithm
based on affine transformations calculated on a triangulation of the shape. In this case, to match
articulated objects it is required to manually select the groups and their articulation in order to
match the scene images. Two different works which are related to estimating transformations
between artworks are [16], [17]. While [16] tries to ensure consistent perspective in art images,
[17] aims to dewarp image reflections shown in convex mirrors within very specific paintings.
Common non-linear registration algorithms like [18] or [19] are also not suited to the purpose
of the present task. Whereas [18] uses a Thin Plate Spline (TPS) to model the transformation,
[19] estimates a displacement vector for each point in the shape. In both cases, these models
introduce artifacts in the registration as observed in [2], which is undesirable for art comparison.

3. Methodology for Scene Analysis
In this paper shapes are represented through landmark points (given in homogeneous coordi-
nates) which are regularly sampled along extracted contours of the corresponding image in an
automatic manner. Thus, the shape of the original artwork is referred to with the matrix X ∈ Rm×3
and with Y ∈ Rn×3 the reproduced shape.

3.1. Problem statement
The main challenge consists of simultaneously solving three tasks. Firstly, the correspondences
between both shapes have to be inferred. Secondly, the groups in the image which share the
same transformation need to be found and finally, the transformations of those groups and thus
the overall deformation model needs to be estimated. The missing groups correspond to image
regions which are reproduced similarly by the artist. Therefore, each of these groups is modeled
through an affine transformation capable of transforming the group from the reproduction into the
original painting. The advantage of using a piecewise-affine transformation model is that it allows
to describe a non-linear transformation in a more parsimonious manner, that is, less parameters
are required for describing the overall transformation. At the same time, the components in the
model associated with different regions in the shape give insights about the structure and geometry
of the artistic deformation.
Formally, the problem consists of estimating a binary data assignment matrix C ∈ Bn×m of n
points belonging to the first shape to m points in the second shape. At the same time, a binary
matrix M ∈ Bn×k of n points to k groups needs to be calculated together with different affine
transformations T ν ∈ R3×3 (ν = 1, . . . , k) for each group. Thus, the overall registration error made
by a solution (M,C, T 1, · · · , T k) can be written as:

Ereg :=

n,k∑
i,ν=1

Mνi


m∑
j=1

Cij‖xj − T νyi‖2︸ ︷︷ ︸
=:rνi

 . (1)

This paper studies an alternating approach for solving the aforementioned problem by first
constructing a large superset of affine transformations

T pool := {T ν |T ν ∈ R3×3, ν = 1, · · · , l}, (2)
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where l >> k. For this purpose the shape Y is subdivided into non-overlapping small segments,
each of them containing at least 6 non-collinear points. For each segment an affine transformation
is estimated and added to the superset Tpool (we assume to have an estimate of matrix C).
Thereafter, each segment is merged with its nearest neighbor and an affine transformation is
calculated for the merged segment, which in turn is added to Tpool. For the nearest neighbor
estimation, the distance between two segments is defined as the Euclidean distance between
their centers of mass (i.e. the average of the segment points). This merging is repeated until the
whole shape is merged into a single segment. Thereafter, using this superset Tpool our algorithm
optimally selects a subset of k transformations that best register the shape and use these active
transformations to estimate the matrix M . Based on this matrix the active transformations are
then updated in turn. Thus, the problem we intend to solve can be formulatted as follows:

min
M,W,C,T ν

l∑
ν=1

wν

(
n∑
i=1

Mνirνi

)
︸ ︷︷ ︸

=:Elin(W,M,C,T ν)

+Equad (3)

s.t.

l∑
ν=1

wν = k, (4)

n ∗ wν −
n∑
i=1

Mνi ≥ 0 (∀ν = 1, · · · , l) (5)

wν ∈ {0, 1} (6)
k∑
ν=1

Mνi = 1 (∀i = 1, · · · , n) (7)

n∑
i=1

Cij = 1 (∀j = 1, · · · , n), (8)

Cij ∈ {0, 1}, Mνi ∈ {0, 1} (9)

Here the binary vector wν = 1 indicates that the ν-th element of the set Tpool is being used
and otherwise wν = 0. Whereas the constraint (4) guarantees to obtain the desired number of
transformations k, the constraint (5) avoids the assignment of points to inactive transformations
wν = 0. This becomes clearer by remarking that constraint (5) is fulfilled whenever the logical
constraint wν = 0⇒

∑n
i=1Mνi = 0 is met.

3.1.1. Finding correspondences
The quadratic term Equad we inserted in 3 measures the distortion between pairs of points between
the shapes and is used to improve the estimation of matrix C. This measure is defined as

d(yi, yj ;xa, xb) := γda(yi, yj ;xa, xb)

+ (1− γ)dl(yi, yj ;xa, xb),
(10)

da(yi, yj ;xa, xb) :=

(
αd
|sij |

+ βd

∣∣∣∣arcsin( ŝab × sij|ŝab||sij |

)∣∣∣∣) , (11)

dl(yi, yj ;xa, xb) :=
||sij ||ŝab||

(|sijf |+ σd)
; (12)

sij := yi − yj , ŝab := xa − xb. (13)

In order estimate the correspondence matrix C between shapes Y and X assuming the knowl-
edge of the groups M and the transformations T ν (i.e. transformations T ν where wν = 1) we
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need to solve the problem (3) can be alternatively formulated as

min
z

k∑
ν=1

zTDνz; s.t. Az = 1, z ∈ {0, 1}. (14)

In this case z is an indicator vector such that zia = 1 if point yi is matched to point xa and
otherwise zero. In this formulation the original matrix C is implicitly included in the vector z.
Furthermore, each matrix Dν contains the values d(T νyi, T νyj ;xa, xb) corresponding to the group
ν and otherwise zero. Whereas the diagonal of Dν consists of the linear terms of equation (3),
the many-to-one constraints of matrix C are expressed through the matrix A. We solve for each
group independently using the IPFP algorithm. As starting solution both shapes X and Y are
registered using a single global transformation.

3.1.2. LP based solution for transformations and assignment of points to groups
In this section we describe how to estimate the active transformations (i.e. the vector W ), assign
points to the corresponding transformations (through the matrix M ) and update them afterwards
(we assume to have the matrix C). This is a hard task due to the quadratic non-linear term Equad
in Eq. (3). Therefore, in praxis we focus only on the minimization of the linear term. During the
first iteration, all elements of matrix M are set to one and the transformations to build r are taken
from Tpool. We adopt an alternate procedure to minimize the linear term:

• Assign points to active transformations solving the linear program (LP) minM
∑n,k
i,ν=1Mνirνi

subject to the constraints
∑k
ν=1Mνi = 1 (for all i = 1, · · · , n) and Mνi ∈ [0 1]. Here the matrix

M ∈ Rk×n only indicates the assignment of points to the k active transformations (and not
to the l elements in Tpool).

• Update the active transformations T ν using M and W . This is done in an exact manner
using weighted least squares ([20]). The exact solution for the transformations is an improve-
ment over [1], [2], where the transformations were only approximated using the Levenberg
Marquardt algorithm.

3.2. Choosing the right number of Clusters
In this section we describe how to automatically determine the complexity of the model, that is the
number of affine transformations required for registration. The underlying idea is to measure the
fluctuations in the registration results when random subsamples of the shapes are considered.
For a given number of clusters k, our algorithm is run on bmax subsampled versions of the original
shape Y (specifically, 60% of the points in the shape are randomly subsampled each time). Thus,
we obtain the clustering results M̂b ∈ Rns×1 (b = 1, · · · , bmax, ns = b0.6 ∗ nc), where M̂b indicates
the cluster number for each point in shape Y . Since the bmax clustering solutions are calculated
on a subset of the points, they are extended to the whole shape using nearest neighbors for
the missing points. The extended clustering solutions are referred to by Mb ∈ Rn×1. Thereafter,
pairwise distances between the different cluster solutions are calculated in order to evaluate the
fluctuations in the results induced by the random subsampling. This is done using the minimal
matching distance

d̂mmd(Mi,Mj) = min
π

1

n

n∑
i=1

1[Mi(i)6=π(Mj(i))], (15)

where the minimum is taken over all permutations π of the k labels. In other words, d̂mmd(Mi,Mj)
measures the percentage of points which changed the assignment (up to a permutation). In
order to avoid a bias when the number of clusters k is increased, d̂mmd is normalized similar
to [21] with the median r(n) of pairwise distances between random labelings. In the case of
stable clustering solutions, the pairwise distances dmmd(Mi,Mj) are expected to be near zero.
In contrast, unstable solutions yield variations in the clusterings and large distances. Therefore,
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Fig. 1. Results of a compositional analysis of complete scenes.

we measure the instability of a solution by approximating the empirical distribution of pairwise
distances dmmd(Mi,Mj) through a histogram h ∈ Rnbins×1 over the distances, and define as a
measure for the instability the sum of weighted counts:

instab(k) :=
nbins∑
i

h(i) ∗ ch(i), (16)

where h(i) is the absolute count and ch(i) is the value of the histogram bin i. Since the number
of runs bmax is the same for every value of k, the absolute counts of the histogram can be used
without introducing any bias. This measure penalizes distances which are far from zero and thus,
correspond to unstable clustering solutions for a certain value k. Therefore, the ideal most stable
number of affine transformations required for registration is defined as:

kopt := min
k

instab(k). (17)

4. Results
We evaluate our approach on five scenes of D and W and show reuslts in Fig . 1 (a)-(d). We
observe that whereas a single global rigid transformation (c) is not able to describe the highly
complex scene deformation, the global non-linear state-of-the-art registration method (b) is also
not able to cope with the global deformation since its complexity is controlled by a single global
parameter, thus not allowing for the required local flexibility. In contrast to this, our method (d)
is not only capable of improving the registration quality of complex scenes, but it is also able
to reveal the structure of how the scene was transformed between the manuscripts. We have
observed that the artist approached the reproduction by independently reproducing small parts
that correspond to semantical entities. These different parts are visualized in (d), where each
color indicates that a region in the image was transformed using certain linear transformation.
Furthermore, we show how a statistical approach can be used to help art historians to better under-
stand the deformations between objects visualized in Fig. 2 (e)-(h). The relative deformation in
the arrangement of the figures is shown in (e), where the i-th row of the depicted matrix encodes
the relative transformation between individuals in the scene if the i-th person is used to align
both images. Using principal component analysis we were able to infer and visualize (f) that arm
gestures and leg positions are responsible for most of the deformations between the magistrates
of a single manuscript. Furthermore, we also discover that the movements of these parts follow
a certain pattern. For instance, the movement of body parts within the feet are highly correlated
and thus constitute a single entity. However, the pointing finger of both hands moves differently to
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Fig. 2. Analysis of individual objects.

the rest of the hand. Finally, we were also able to discover by means of a Kolmogorov- Smirnov
hypothesis test with a significance level of a = 0.05, which parts of the shape consistently feature
structured deformations between the codices. For the codices H and D, the head region of the
magistrates is systematically deformed between both manuscripts. Therefore we can observe a
difference between the two artists in the notion of human proportion. Although one is copying from
the other, both have their own ideas about the appearance and posture of the human figures.
Bodyparts correalate in their own logic (g). Specially the relationship between body and head is
treated independently in D and W. We visualize this finding in (h).

5. Conclusion
An important contribution of the present paper is to show that both the Wolfenbüttel and the
Dresden codices feature important variations both at the level of scene arrangements and single
individuals. For instance, we observed that in judiciary scenes, the relative distance between the
magistrate and the rest of the individuals substantially varies between the codices. Our analysis
shows that the arrangement of persons is not static but that it changes dynamically according to
the artistic and historical context in which each codex was reproduced.
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