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Abstract. In this work we propose a novel framework for generic event
monitoring in live cell culture videos, built on the assumption that un-
predictable observations should correspond to biological events. We use a
small set of event-free data to train a multioutput multikernel Gaussian
process model that operates as an event predictor by performing autore-
gression on a bank of heterogeneous features extracted from consecutive
frames of a video sequence. We show that the prediction error of this
model can be used as a probability measure of the presence of relevant
events, that can enable users to perform further analysis or monitoring of
large-scale non-annotated data. We validate our approach in two phase-
contrast sequence data sets containing mitosis and apoptosis events: a
new private dataset of human bone cancer (osteosarcoma) cells and a
benchmark dataset of stem cells.
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1 Introduction

Major activities in a cell’s life cycle can be monitored from changes in its shape
and appearance. Hence, visual monitoring of cell cultures has become a major
trend in biomedical research (see [2] for a comprehensive review). With the
development of advanced 3D (x, y, and z) and 4D (x, y, z and time) microscopy
techniques such as lightsheet, dedicated screening and live cell imaging systems,
the amount of recorded data has concomitantly increased to an extent beyond
the feasible level for a human to perform handcraft analysis. Thus, there is
growing necessity in life sciences for generic analysis tools that reliably find and
trace changes of cells and organisms in large data sets.

As a framework for specialized analysis tools, we introduce a generic event
detection method. We define an event as a spatially and temporally local visual
change that has a semantic meaning in biological processes. Our goal is to pro-
vide a measure of the probability of such events occurring in a specific spatial
and temporal location of a sequence of images, not only in terms of a localised
detection but as a dense probability map for each timestep. We propose using a



multitask multikernel Gaussian process model [10] in the autoregression setting
in a similar fashion to [8], that predicts a feature set of a region in the current
frame from the feature set of the same region of the previous frame. Following
the assumption that a large prediction error indicates a high confidence about
the presence of an event, we construct event probability maps for each frame of
a video sequence given those prediction errors.

Automation of event detection has been successfully applied to applications
such as surveillance [1] and activity analysis [5]. Specifically for cell culture
videos, this problem has first been studied by Yang et al. [11], who introduced a
unified method for segmentation and tracking of live cell cultures that incorpo-
rates the temporal context information using level sets. The method is also able
to detect mitosis based on the detected cell trajectories. Hand et al. [4] provide a
benchmarking study on five live cell tracking methods applied to phase-contrast
images, and report comparable tracking performance to the more invasive flu-
orescence imaging. Huh et al. [6] propose a mitosis detection method for the
same setup, which depends on a heuristic-based hypothesis generation (selection
of important image regions), and a time-smoothed conditional random field for
classification of hypotheses as mitosis and other. In another study, Huh et al. [7]
propose a method for apoptosis detection which depends on a more specialized
hypothesis generation method and a support vector classifier.

All aforementioned methods i) are specialized for a single task, ii) require an
application-dependent hypothesis generation mechanism, and iii) require super-
vision by ground-truth labels. The method we propose is an attempt for building
a generic cell culture event detector that does not require event annotations and
does not rely on hypothesis generation heuristics. Instead, it densely processes
image features and outputs a dense map indicating probabilities of an event
taking place.

2 Event detection from negative examples

We propose a novel event detection framework where a predictor is trained on
local patches of a small set of event-free frames. For the remaining frames of the
sequence, our model produces an event probability map based on the assumption
that the predictor will make a larger prediction error during any type of event.
Figure 1 illustrates the workflow of the proposed framework.

2.1 Feature Extraction

Given a sequence of T frames, we divide each frame in a single-scaled grid of P
distinct local patches, from which we extract appearance features. We can sum-
marize our features by stacking all patch features in a data set X = [x1, · · · ,xN ],
where N = P × T . Previous studies [9] have directed their efforts towards en-
gineering powerful features to solve a specific application. Instead, we build a
bank of generic appearance features, and learn which features best fit the event-
free training data distribution. We extract five types of features: Difference of



training

prediction error

Event 
Predictor ……..

t t+1 N

Fig. 1: The operation workflow of the event detection framework. The event
predictor predicts the feature vector in a patch of frame t+ 1 given the feature
vector in the corresponding patch at frame t. It is trained on a few frames of
a given query sequence where no events occur. For the remaining frames, the
predictor outputs a score map of prediction errors in each patch. The prediction
output can either be used as is for monitoring, or be thresholded for detection
of specific events. This figure is best viewed in color.

local brightness histograms between consecutive frames (D-Hist), scale-invariant
feature transform (SIFT), difference of SIFT descriptors between consecutive
frames (D-SIFT), local binary patterns (LBP), and histograms of oriented gra-
dients (HOG).

2.2 Multioutput Gaussian process autoregression

As the event detector, we propose to use autoregression (i.e. learning a model
that takes a set of covariates as input and predicts the same set of covariates
as output) for predicting the feature vector of an image region at the current
frame from the feature vector of the same region from the previous frame. To
capture non-linear dependencies across features of consecutive frames and in-
tercorrelations of feature vectors, we propose using the spike-and-slab multitask
multikernel Gaussian process model of Titsias et al. [10] in the autoregression
setting, and refer to it as multioutput Gaussian process autoregression (MOGP).
Let x(t,p) be the feature representation of patch p at frame t, and xq(t,p) be its

q-th dimension. The generative process of the model is as below
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Here, φm(.) is a latent variable for kernel m, and it is governed by a Gaussian
process prior. By xm

(t,p), we denote the subset of features used by kernel m.

Above, wqm is the weight of kernel m for output dimension q, fq(.) is the noiseless
regression output for dimension q, and xq(t+1,p) is the noisy regression output of

patch p at time point t+1. The term δ0(.) is the Dirac delta function centered at
zero, and π is a constant determining the mixing coefficients of the spike at zero
and the normal distribution. This formulation serves as a spike-and-slab prior
on the kernel weights, inducing sparsity, which allows effective selection of useful
kernels and elimination of noisy ones. The mixing constant π and kernel weights
wqm, are learned by mean-field variational approximation. Noise covariances σ2

q

and σ2
w, the mean function µm(.) and the kernel hyperparameters are learned

by Type II Maximum Likelihood. See [10] for further details.
We draw the hypothesis that the features of a patch become less predictable

from its state at the previous time point under existence of an event. Hence,
we use the prediction error ||x̂(t+1,p) − x(t+1,p)||2 as a score proportional to the
probability of the existence of an event at patch p at time t+ 1, where x̂(t+1,p)

and x(t+1,p) are the predicted and observed feature vectors, respectively.
We perform effective feature selection by assigning each feature set to a kernel

and learning their contribution to the prediction process (i.e kernel weights wqm)
from training data. By plugging in a multiple heterogeneous set of features, the
spike-and-slab prior on kernel weights will assign high weights to the features
encoding richer information. This leverages the feature sets that best represent
the variability of the event-free training data. Additionally, the multitask nature
of the model allows incorporating intercorrelations of the features in the next
frame, and its multikernel nature allows automatic feature selection.

3 Experiments

Devising our method as a generic event detector, we aim to appeal to multi-
ple applications with different event types of interest. Due to practical reasons,
we evaluate the correspondence of the event probability maps produced by our
method to two types of biologically important events: apoptosis [7] and mitosis
[6], even though other types of events such as imaging artifacts, atrophy, hy-
pertrophy, and necrosis could also have been analyzed. We validate our model
on two different types of cells: human osteosarcoma cells, and stem cells. To
illustrate the event detection performance of our method, we provide precision-
recall curve plots, and report the area under precision-recall curve (AUC) as a
threshold-independent performance measure.

We compare the proposed MOGP method to OC-SVM (one-class SVM),
which is used as a standard tool for novelty detection in non-biological applica-
tions [3]. We train the OC-SVM treating feature vectors of all training patches
as i.i.d samples. This is meant to illustrate the effect of autoregression (i.e. mak-
ing predictions across consecutive frames) on prediction performance. The static
grid of local regions is built using 50 by 50 pixels sized patches for both data
sets, so that the resolution of the frame determines the amount of image patches
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Fig. 2: Precision-recall curves of event predictors in comparison (top) and contri-
bution of feature types to event prediction learned by MOGP (bottom) averaged
over all human osteosarcoma cell (left) and stem cell (right) sequencs.

being sampled. We use the squared exponential function kernel as the covari-
ance function k(·, ·) for all feature sets in the bank. We analyze each sequence
independently and report the performance averaged over all sequences of a given
cell type. We train both predictors on the first five frames of a given sequence,
where there are no mitosis and apoptosis events.

We count a ground-truth event as correctly detected if the prediction score of
a patch located less than 30 pixels away lies above the decision threshold, and its
temporal location differs in three or less frames. In case of multiple detections
within the temporal tolerance interval, we count only one of them as a true
positive and the rest as false positives. This evaluation procedure is identical to
that of [7].

3.1 Phase-contrast data

Human osteosarcoma (U2-OS) cell data set: This data set consists of hu-
man osteosarcoma cells on which apoptosis is induced by phototoxicity. When
a sample is illuminated, the energy brought into the sample not only excites
fluorophores but can also be transferred to other molecules. Subsequently, con-
version of the energy leads to generation of radicals, for example reactive oxygen
species such as hydrogen peroxide. These molecules are harmful for the cell as
they damage proteins and DNA leading to misfunctional proteins or mutations.
When cells are damaged to an extent where cellular defense mechanisms can no
longer compensate for, cells trigger apoptosis (programmed cell death).

To observe apoptosis induced by phototoxicity, human osteosarcoma cells
were seeded onto coverslips that contained an integrated grid to relocate cells.



Fig. 3: Examples of frames (top) and prediction maps (bottom). First two
columns show frames from the acquired sequence of human osteosarcoma cells.
Last two columns show examples from the stem cell data set of [7]. Yellow bound-
ing boxes in the top row show thresholded detections, while the color coding of
the bottom row expresses the prediction error (increases as the color goes from
blue through yellow to red).

Then, 5 to 10 cells in a field of view were irradiated with high intensity laser
light. Phase contrast images of the living cells were acquired every 10 minutes
for 24 hours with a 10× phase contrast objective and under normal growth
conditions. Following this procedure, 8 sequences of 134 frames were recorded
with a resolution of 800× 600 pixels. A sequence consists of 113.4 mitosis events
and 4.4 apoptosis events on average.

Stem cell data set: For additional validation we choose a public data set
introduced in [7] that consists of three sequences of 540 frames where apoptosis
was induced in C2C12 myoblastic stem cells by applying Mitomycin C. The
sequences contain 384.6 apoptosis events and 9.0 mitosis events on average.

3.2 Results and discussion

In the precision-recall curves of Figure 2, MOGP provides a reasonable perfor-
mance in two distinct applications, 0.77 AUC for human osteosarcoma cells and
0.60 AUC for stem cells, which are significantly above the chance level of 0.006
AUC and 0.001 AUC, respectively. MOGP clearly outperforms OC-SVM as well
on both data sets due to its autoregressive nature (i.e. ability to relate changes
in consecutive frames).

The bar plots in Figure 2 show the weights MOGP assigns to feature sets,
indicating the significance of their contribution to prediction. For the human
osteosarcoma cell data set, in which 92.3% of the events are cell mitosis, HOG
features achieve the largest weight, though with a marginal difference. This shows
that MOGP discovers HOG as the most informative feature set, which is con-
sistent with the hand-crafted feature set of the mitosis detector in [6]. For the



stem cell data set, LBP and D-SIFT features gain the largest weight, which is
also parallel to the design of the apoptosis predictor proposed in [7].

Besides serving as a monitoring tool as they are, the scoremaps produced by
our model can be used for event detection by determining a decision threshold.
We choose the threshold from a small set of annotated validation data (6th to
10th frame of each sequence) that provides the greatest F1−score (harmonic
mean of precision and recall). We reach average 0.52 precision and 0.69 recall
over all human osteosarcoma sequences. For the stem cell sequences, our pre-
dictor gives 0.68 precision and 0.61 recall, which is significantly lower than the
heavily preprocessed and fully-supervised predictor of Huh et al. [7] that reaches
0.94 prediction and 0.89 recall. While supervising the predictor by events brings
a large performance gain, it makes the predictor dependent on a particular ap-
plication. We hereby demonstrate that a reasonable, though not perfect, perfor-
mance can also be reached by much less modeling assumptions. Figure 3 shows
examples of scoremap outputs together with thresholded detections of mitosis
and apoptosis events in both data sets.

The fact that mitosis and apoptosis feature very similar morphological changes
at the first stage of the event (rounding up, bright boundary) poses one of the
main difficulties when performing apoptosis detection in the presence of mitosis.
The observation of the prediction patterns produced by the model suggests that
those responses encode discriminative information when tackling the problem
of event categorization. Hence, supervised learning could be performed by these
event signatures. Mitosis tends to manifest in two differentiated phases (round
compact shaping, and separation) producing two distinguishable sharp peaks in
the prediction error spanned across 5 to 6 frames. Apoptosis events however,
show a single wide response (See Figure 4).

4 Conclusions

We propose a generic event detection framework that consists of an autoregres-
sion model that is able to characterize events in terms of their unpredictabil-
ity given a set of normal data as training examples. We demonstrate that the
model predictions correspond to biologically relevant cell events, as well as show-
ing remarkable improvements over a well known approach (one-class SVM) in
two different data sets. Additionally, our model maps each video frame into a
probability map which sheds important information about the ongoing events,
enabling further research on supervised approaches.
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