Journal Article
B. H. Menze, Lichy, M. P., Bachert, P., Kelm, B. Michael, Schlemmer, H. P., and Hamprecht, F. A.,
“Optimal Classification of Long Echo Time in vivo Magnetic Resonance Spectra in the Detection of Recurrent Brain Tumor”,
NMR in Biomedicine, vol. 19, pp. 599-609, 2006.
Technical Report (289.77 KB) C. S. Garbe, Roetmann, K., Beushausen, V., and Jähne, B.,
“An optical flow MTV based technique for measuring microfluidic flow in the presence of diffusion and Taylor dispersion”,
Exp. Fluids, vol. 44, p. 439--450, 2008.
E. - A. Horvát, Hanselmann, M., Hamprecht, F. A., and Zweig, K. A.,
“One plus one makes three (for social networks)”,
PLoS ONE, vol. 4,7, 2012.
B. Jähne,
“The ocean in the lab: measurements with light and shadow”,
Ruperto Carola Forschungsmagazin Heidelberg University, vol. 7, pp. 52–59, 2015.
F. O. Kaster, Merkel, B., Nix, O., and Hamprecht, F. A.,
“An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements”,
Computer Science - Research and Development, vol. 26, pp. 65-85, 2011.
Technical Report (808.16 KB) V. Ulman, Maška, M., Magnusson, K. E. G., Ronneberger, O., Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D., Radojevic, M., Smal, I., Rohr, K., Jaldén, J., Blau, H. M., Dzyubachyk, O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S. - Y., Dufour, A., Olivo-Marin, J. C., Reyes-Aldasoro, C. C., Solis-Lemus, J. A., Bensch, R., Brox, T., Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F. A., Esteves, T., Quelhas, P., Demirel, Ö., Malström, L., Jug, F., Tomančák, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M., and Ortiz-de-Solorzano, C.,
“An Objective Comparison of Cell Tracking Algorithms”,
Nature Methods, vol. 14, no. 12, pp. 1141-1152, 2017.
Technical Report (4.24 MB) P. Bell, Schlecht, J., and Ommer, B.,
“Nonverbal Communication in Medieval Illustrations Revisited by Computer Vision and Art History”,
Visual Resources Journal, Special Issue on Digital Art History, vol. 29, p. 26--37, 2013.
M. Zisler, Kappes, J. H., Schnörr, C., Petra, S., and Schnörr, C.,
“Non-Binary Discrete Tomography by Continuous Non-Convex Optimization”,
IEEE Comp. Imaging, vol. 2, pp. 335-347, 2016.
B. Y. Renard, Kirchner, M., Steen, H., Steen, J. A. J., and Hamprecht, F. A.,
“NITPICK: Peak Identification for Mass Spectrometry Data”,
BMC Bioinformatics, vol. 9, p. 355, 2008.
Technical Report (643.89 KB) N. Krasowki, Beier, T., Knott, G. W., Köthe, U., Hamprecht, F. A., and Kreshuk, A.,
“Neuron Segmentation with High-Level Biological Priors”,
IEEE Transactions on Medical Imaging, vol. 37, no. 4, 2017.
S. Wolf, Bailoni, A., Pape, C., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A.,
“The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp. 3724-3738, 2020.
Technical Report (2.58 MB) M. Kandemir, Klami, A., Gonen, M., Vetek, A., and Kaski, S.,
“Multi-task and multi-view learning of user state”,
Neurocomputing, vol. 139, pp. 97-106, 2014.
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C.,
“A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods”,
Int.~J.~Computer Vision, vol. 70, pp. 257-277, 2006.
Technical Report (447.65 KB) A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C.,
“A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods”,
Int. J. Computer Vision, vol. 70, pp. 257-277, 2006.
B. Jähne, Brocke, M., Eisele, H., Hader, S., Hamprecht, F. A., Happold, W., Raisch, F., and Restle, J.,
“Multidimensionale Bildverarbeitung in der Produktion”,
QZ, vol. 47, p. 1154--1159, 2002.
J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C.,
“Multicuts and Perturb & MAP for Probabilistic Graph Clustering”,
Journal of Mathematical Imaging and Vision, vol. 56, pp. 221–237, 2016.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C.,
“Multicuts and Perturb & MAP for Probabilistic Graph Clustering”,
J. Math. Imag. Vision, vol. 56, pp. 221–237, 2016.