Journal Article
B. Savchynskyy, Schmidt, S., Kappes, J. H., and Schnörr, C.,
“Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing”,
UAI. Proceedings, pp. 746-755, 2012.
A. Criminisi, Blake, A., Rother, C., Shotton, J., and Torr, P. H. S.,
“Efficient dense stereo with occlusions for new view-synthesis by four-state dynamic programming”,
International Journal of Computer Vision, vol. 71, pp. 89–110, 2007.
J. Funke, Andres, B., Hamprecht, F. A., Cardona, A., and Cook, M.,
“Efficient Automatic 3D-Reconstruction of Branching Neurons from EM Data”,
CVPR 2012. Proceedings, pp. 1004-1011, 2012.
Technical Report (1.64 MB) M. Storath, Brandt, C., Hofmann, M., Knopp, T., Salamon, J., Weber, A., and Weinmann, A.,
“Edge preserving and noise reducing reconstruction for magnetic particle imaging”,
IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 74 - 85, 2017.
Technical Report (1.43 MB) A. - S. Wahl, Erlebach, E., Brattoli, B., Büchler, U., Kaiser, J., Ineichen, V. B., Mosberger, A. C., Schneeberger, S., Imobersteg, S., Wieckhorst, M., Stirn, M., Schroeter, A., Ommer, B., and Schwab, M. E.,
“Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats”,
Sage Journals, vol. Journal of Cerebral Blood Flow & Metabolism, 2018.
0271678x18777661.pdf (770.87 KB) J. Scholz, Wiersbinski, T., Ruhnau, P., Kondermann, D., Garbe, C. S., Hain, R., and Beushausen, V.,
“Double-pulse planar-LIF investigations using fluorescence motion analysis for mixture formation investigation”,
Exp. Fluids, vol. 45, p. 583--593, 2008.
T. Kohlberger, Schnörr, C., Bruhn, A., and Weickert, J.,
“Domain decomposition for variational optical flow computation”,
IEEE Trans. Image Proc., vol. 14, pp. 1125-1137, 2005.
V. Uhlmann, Haubold, C., Hamprecht, F. A., and Unser, M.,
“Diverse Shortest Paths for Bioimage Analysis”,
Bioinformatics, pp. 1-3, 2017.
T. Schüle, Schnörr, C., Weber, S., and Hornegger, J.,
“Discrete Tomography By Convex-Concave Regularization and D.C. Programming”,
Discr. Appl. Math., vol. 151, pp. 229-243, 2005.
B. Savchynskyy,
“Discrete Graphical Models — An Optimization Perspective”,
Foundations and Trends® in Computer Graphics and Vision, vol. 11, pp. 160–429, 2019.
J. Lellmann, Lellmann, B., Widmann, F., and Schnörr, C.,
“Discrete and Continuous Models for Partitioning Problems”,
Int.~J.~Comp.~Visionz, vol. 104, pp. 241-269, 2013.
Technical Report (4.74 MB) A. Vijayan, Tofanelli, R., Strauss, S., Cerrone, L., Wolny, A., Strohmeier, J., Kreshuk, A., Hamprecht, F. A., Smith, R. S., and Schneitz, K.,
“A Digital 3D Reference Atlas Reveals Cellular Growth Patterns Shaping the Arabidopsis Ovule”,
eLife, 2021.
D. Cremers, Tischhäuser, F., Weickert, J., and Schnörr, C.,
“Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford–Shah functional”,
Int. J. Computer Vision, vol. 50, pp. 295–313, 2002.
J. A. J. Steen, Steen, H., Georgi, A., Parker, K. C., Springer, M., Kirchner, M., Hamprecht, F. A., and Kirschner, M. W.,
“Different Phosphorylation States of the Anaphase Promoting Complex in Response to Anti-Mitotic Drugs: A Quantitative Proteomic Analysis”,
Proceedings of the National Academy of Sciences, vol. 105, pp. 6069-6074, 2008.
Technical Report (173.02 KB) F. A. Hamprecht, Cohen, A. J., Tozer, D. J., and Handy, N. C.,
“Development and assessment of new exchange-correlation functionals”,
Journal of Chemical Physics, vol. 109, pp. 6264-6271, 1998.
X. Lou, Kirchner, M., Renard, B. Y., Köthe, U., Graf, C., Lee, C., Steen, J. A. J., Steen, H., Mayer, M. P., and Hamprecht, F. A.,
“Deuteration Distribution Estimation with Improved Sequence Coverage for HX/MS Experiments”,
Bioinformatics, vol. 26(12), pp. 1535-1541, 2010.
Technical Report (518.01 KB) E. Eyjolfsdottir, Branson, S., Burgos-Artizzu, X. P., Hoopfer, E. D., Schor, J., Anderson, D. J., and Perona, P.,
“Detection of social actions in fruit flies”,
Lecture Notes in Computer Science, vol. 8690, pp. 772–787, 2014.
H. Schilling, Diebold, M., Gutsche, M., and Jähne, B.,
“On the design of a fractal calibration pattern for improved camera calibration”,
tm - Technisches Messen, vol. 84, pp. 440–451, 2017.
S. Bollweg, Haußmann, M., Kasieczka, G., Luchmann, M., Plehn, T., and Thompson, J.,
“Deep-Learning Jets with Uncertainties and More”,
SciPost Phys, vol. 8, no. 1, 2020.
Technical Report (1.65 MB) J. Kleesiek, Urban, G., Hubert, A., Schwarz, D., Maier-Hein, K., Bendszus, M., and Biller, A.,
“Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.”,
NeuroImage, vol. 129, pp. 460-469, 2016.
Technical Report (1.14 MB) T. Dencker, Klinkisch, P., Maul, S. M., and Ommer, B.,
“Deep learning of cuneiform sign detection with weak supervision using transliteration alignment”,
PLoS ONE, vol. 15, no. 12, 2020.
B. Maco, Holtmaat, A., Cantoni, M., Kreshuk, A., Straehle, C. N., Hamprecht, F. A., and Knott, G. W.,
“Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons”,
PloS one, vol. 8 (2), 2013.
Technical Report (2.13 MB)