Publications

Export 1963 results:
[ Author(Desc)] Title Type Year
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
D. Kainmueller, Jug, F., Rother, C., and Myers, G., Active graph matching for automatic joint segmentation and annotation of C. elegans, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, vol. 8673 LNCS, pp. 81–88.
C. Kamann and Rother, C., Benchmarking the Robustness of Semantic Segmentation Models, in CVPR 2020, 2020.PDF icon PDF (3.61 MB)
C. Kamann and Rother, C., Benchmarking the Robustness of Semantic Segmentation Models, 2019.
M. Kandemir and Hamprecht, F. A., The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors, NIPS. Proceedings, vol. 44. pp. 145-159, 2015.PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
M. Kandemir, Haußmann, M., Diego, F., Rajamani, K., van der Laak, J., and Hamprecht, F. A., Variational weakly-supervised Gaussian processes, BMVC. Proceedings. 2016.PDF icon Technical Report (3.28 MB)
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Active machine learning for training an event classification, Patent, Patent Number WO2017032775 A1, 2017.
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Maschinelles Lernen, Patent, Patent Number WO2017032775A1, 2017.PDF icon Technical Report (317.04 KB)
M. Kandemir, Rubio, J. C., Schmidt, U., Wojek, C., Welbl, J., Ommer, B., and Hamprecht, F. A., Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures, in Medical Image Computing and Computer-Assisted Intervention, 2014, p. 154--161.PDF icon Technical Report (2 MB)
M. Kandemir, Asymmetric transfer learning with deep Gaussian processes, ICML. Proceedings. pp. 730-738, 2015.PDF icon Technical Report (570.95 KB)
M. Kandemir, Feuchtinger, A., Walch, A., and Hamprecht, F. A., Digital Pathology: Multiple instance learning can detect Barrett'scancer, ISBI. Proceedings. pp. 1348-1351, 2014.PDF icon Technical Report (2.86 MB)
M. Kandemir and Hamprecht, F. A., Cell event detection in phase-contrast microscopy sequences from few annotations, MICCAI. Proceedings, vol. LNCS 9351. Springer, pp. 316-323, 2015.PDF icon Technical Report (564.69 KB)
M. Kandemir and Hamprecht, F. A., Computer-aided diagnosis from weak supervision: A benchmarking study, Computerized Medical Imaging and Graphics, vol. 42, pp. 44-50, 2014.PDF icon Technical Report (4.28 MB)
M. Kandemir and Hamprecht, F. A., Instance Label Prediction by Dirichlet Process Multiple Instance Learning, in UAI. Proceedings, 2014.PDF icon Technical Report (4.26 MB)
M. Kandemir, Klami, A., Gonen, M., Vetek, A., and Kaski, S., Multi-task and multi-view learning of user state, Neurocomputing, vol. 139, pp. 97-106, 2014.
M. Kandemir, Rubio, J. C., Schmidt, U., Welbl, J., Ommer, B., and Hamprecht, F. A., Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures, in MICCAI. Proceedings, 2014, pp. 154-161.PDF icon Paper (2 MB)
M. Kandemir, Zhang, C., and Hamprecht, F. A., Empowering multiple instance histopathology cancer diagnosis by cell graphs, in MICCAI. Proceedings, 2014, vol. 8674, pp. 228-235.PDF icon Technical Report (1.76 MB)
M. Kandemir, Agkül, A., Haußmann, M., and Ünal, G., Evidential Turing Processes. arXiv preprint, 2021.
T. Kandlbinder, Gasaustauschmessungen mit Sauerstoff, Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 1994.
A. Kannan, Winn, J., and Rother, C., Clustering appearance and shape by learning jigsaws, in Advances in Neural Information Processing Systems, 2007, pp. 657–664.
A. Kannan, Winn, J., and Rother, C., Clustering appearance and shape by learning jigsaws, in Advances in Neural Information Processing Systems, 2007, pp. 657–664.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Multicuts and Perturb & MAP for Probabilistic Graph Clustering, Journal of Mathematical Imaging and Vision, vol. 56, pp. 221–237, 2016.
J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Probabilistic correlation clustering and image partitioning using perturbed Multicuts, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9087, pp. 231–242.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Multicuts and Perturb & MAP for Probabilistic Graph Clustering, J. Math. Imag. Vision, vol. 56, pp. 221–237, 2016.
J. Kappes, Speth, M., Reinelt, G., and Schnörr, C., Higher-order Segmentation via Multicuts, Comp. Vision Image Understanding, vol. 143, pp. 104–119, 2016.
J. H. Kappes, Petra, S., Schnörr, C., and Zisler, M., TomoGC: Binary Tomography by Constrained Graph Cuts, in Proc. GCPR, 2015.
J. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts, in Proc. SSVM, 2015.
J. Hendrik Kappes, Beier, T., and Schnörr, C., MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves, in International Workshop on Graphical Models in Computer Vision, 2014.
J. H. Kappes, Schmidt, S., and Schnörr, C., MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation, in European Conference on Computer Vision (ECCV), 2010, vol. 6313, pp. 735–747.
J. H. Kappes and Schnörr, C., MAP-Inference for Highly-Connected Graphs with DC-Programming, in Pattern Recognition – 30th DAGM Symposium, 2008, vol. 5096, pp. 1–10.
J. Hendrik Kappes, Speth, M., Andres, B., Reinelt, G., and Schnörr, C., Globally Optimal Image Partitioning by Multicuts, in EMMCVPR, 2011.
J. Hendrik Kappes, Inference on Highly-Connected Discrete Graphical Models with Applications to Visual Object Recognition. Ruprecht-Karls-Universität Heidelberg, Faculty of Mathematics and Computer Sciences, Heidelberg, Germany, 2011.
J. H. Kappes, Speth, M., Reinelt, G., and Schnörr, C., Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization, in CVPR, 2013.

Pages