E. Fita, Damrich, S., and Hamprecht, F. A.,
“The Algebraic Path Problem for Graph Metrics”,
39th International Conference on Machine Learning, PMLR. Proceedings , vol. 162. pp. 19178-19204, 2022.
A. Monroy and Ommer, B.,
“Beyond Bounding-Boxes: Learning Object Shape by Model-driven Grouping”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 7574. Springer, p. 582--595, 2012.
Technical Report (1.58 MB) C. Haubold, Uhlmann, V., Unser, M., and Hamprecht, F. A.,
“Diverse M-best Solutions by Dynamic Programming”,
GCPR. Proceedings, vol. LNCS 10496. Springer, pp. 255-267, 2017.
T. Beier, Andres, B., Köthe, U., and Hamprecht, F. A.,
“An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem”,
ECCV. Proceedings, vol. LNCS 9906. Springer, pp. 715-730, 2016.
Technical Report (4.89 MB) T. Hehn and Hamprecht, F. A.,
“End-to-end Learning of Deterministic Decision Trees”,
German Conference on Pattern Recognition. Proceedings, vol. LNCS 11269. Springer, pp. 612-627, 2018.
Technical Report (1.4 MB) F. Draxler, Veschgini, K., Salmhofer, M., and Hamprecht, F. A.,
“Essentially No Barriers in Neural Network Energy Landscape”,
ICML. Proceedings, vol. 80. p. 1308--1317, 2018.
Technical Report (685.93 KB) M. von Borstel, Kandemir, M., Schmidt, P., Rao, M., Rajamani, K., and Hamprecht, F. A.,
“Gaussian process density counting from weak supervision”,
ECCV. Proceedings, vol. LNCS 9905. Springer, pp. 365-380 , 2016.
Technical Report (1.71 MB) C. Haubold, Ales, J., Wolf, S., and Hamprecht, F. A.,
“A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets”,
ECCV. Proceedings, vol. LNCS 9911. Springer, pp. 566-582, 2016.
Technical Report (1.18 MB)