Journal Article
A. Arnab, Zheng, S., Jayasumana, S., Romera-paredes, B., Kirillov, A., Savchynskyy, B., Rother, C., Kahl, F., and Torr, P.,
“Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation”,
Cvpr, vol. XX, pp. 1–15, 2018.
M. Hanselmann, Kirchner, M., Renard, B. Y., Amstalden, E. R., Glunde, K., Heeren, R. M. A., and Hamprecht, F. A.,
“Concise Representation of MS Images by Probabilistic Latent Semantic Analysis”,
Analytical Chemistry, vol. 80, pp. 9649-9658, 2008.
Technical Report (3.91 MB) M. Kirchner, Renard, B. Y., Köthe, U., Pappin, D. J., Hamprecht, F. A., Steen, J. A. J., and Steen, H.,
“Computational Protein Profile Similarity Screening for Quantitative Mass Spectrometry Experiments”,
Bioinformatics, vol. 26 (1), pp. 77-83, 2010.
Technical Report (380.19 KB) B. H. Menze, Kelm, B. Michael, Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., and Hamprecht, F. A.,
“A Comparison of Random Forest and its Gini Importance with Standard Chemometric Methods for the Feature Selection and Classification of Spectral Data”,
BMC Bioinformatics, vol. 10:213, 2009.
Technical Report (675 KB) M. Marxen, Sullivan, P. E., Loewen, M. R., and Jähne, B.,
“Comparison of Gaussian particle center estimators and the achievable measurement density for particle tracking velocimetry”,
Exp. Fluids, vol. 29, pp. 145-153, 2000.
C. Weber, Zechmann, C. M., Kelm, B. Michael, Zamecnik, R., Hendricks, D., Waldherr, R., Hamprecht, F. A., Delorme, S., Bachert, P., and Ikinger, U.,
“Comparison of correctness of manuel and automatic evaluation of MR-spectrum with prostrate cancer”,
Der Urologe, vol. 46, p. 1252, 2007.
P. A. Lange, Jähne, B., Tschiersch, J., and Ilmberger, J.,
“Comparison between an amplitude-measuring wire and a slope-measuring laser water wave gauge”,
Rev. Sci. Instrum., vol. 53, p. 651--655, 1982.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.,
“A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems”,
Int.~J.~Comp.~Vision, 2015.
Technical Report (5.12 MB) J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.,
“A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems”,
CoRR, vol. abs/1404.0533, 2014.
Technical Report (3.32 MB) J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.,
“A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems”,
International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.,
“A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems”,
International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.,
“A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems”,
International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.,
“A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems”,
International Journal of Computer Vision, pp. 1-30, 2015.
Technical Report (1.5 MB) J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.,
“A Comparative Study of Modern Inference Techniques for Structured
Discrete Energy Minimization Problems”,
CoRR, 2014.
R. Szeliski, Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., and Rother, C.,
“A comparative study of energy minimization methods for Markov random fields with smoothness-based priors”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, pp. 1068–1080, 2008.
R. Szeliski, Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., and Rother, C.,
“A comparative study of energy minimization methods for Markov random fields with smoothness-based priors”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, pp. 1068–1080, 2008.
L. Nagel, Krall, K. Ellen, and Jähne, B.,
“Comparative heat and gas exchange measurements in the Heidelberg Aeolotron, a large annular wind-wave tank”,
Ocean Sci., vol. 11, p. 111--120, 2015.
L. Nagel, Krall, K. Ellen, and Jähne, B.,
“Comparative heat and gas exchange measurements in the Heidelberg Aeolotron, a large annular wind-wave tank”,
Ocean Sci. Discuss., vol. 11, p. 1691--1718, 2014.
M. Baust, Weinmann, A., Wieczorek, M., Lasser, T., Storath, M., and Navab, N.,
“Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging based on a Riemannian Manifold Approach”,
IEEE Transactions on Medical Imaging, vol. 35, no. 8, pp. 1972–1989, 2016.
Technical Report (8.65 MB) F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C.,
“A Class of Quasi-Variational Inequalities for Adaptive Image Denoising
and Decomposition”,
Computational Optimization and Applications (COAP), vol. 54 (2), pp. 371-398, 2013.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C.,
“A class of quasi-variational inequalities for adaptive image denoising and decomposition”,
Computational Optimization and Applications, vol. 54, pp. 371-398, 2013.
Technical Report (748.66 KB)