Publications

Export 1965 results:
Author [ Title(Desc)] Type Year
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
F. Schimmel, Learnability of Approximated Graph Cut Segmentation, Heidelberg University, 2018.
L. Schott, Learned Watershed Algorithm: End-to-End Learning of Seeded Segmentation, Heidelberg University, 2017.
S. Wolf, Schott, L., Köthe, U., and Hamprecht, F. A., Learned Watershed: End-to-End Learning of Seeded Segmentation, ICCV. pp. 2030-2038, 2017.PDF icon Technical Report (3.76 MB)
R. Hühnerbein, Savarino, F., Petra, S., and Schnörr, C., Learning Adaptive Regularization for Image Labeling Using Geometric Assignment, preprint: arXiv, 2019.
R. Hühnerbein, Savarino, F., Petra, S., and Schnörr, C., Learning Adaptive Regularization for Image Labeling Using Geometric Assignment, in Proc. SSVM, 2019.
D. Withopf and Jähne, B., Learning algorithm for real-time vehicle tracking, in Proc. IEEE Intelligent Transportation Systems Conference ITSC '06, 2006, p. 516--521.
H. Nickisch, Rother, C., Kohli, P., and Rhemann, C., Learning an Interactive Segmentation System - Supplemental Material, 2010.
A. Krull, Brachmann, E., Michel, F., Yang, M. Ying, Gumhold, S., and Rother, C., Learning analysis-by-synthesis for 6d pose estimation in RGB-D images, in Proceedings of the IEEE International Conference on Computer Vision, 2015, vol. 2015 Inter, pp. 954–962.
L. Fiaschi, Learning Based Biological Image Analysis. University of Heidelberg, 2013.
B. Ommer and Buhmann, J. M., Learning Compositional Categorization Models, in Proceedings of the European Conference on Computer Vision, 2006, vol. 3953, p. 316--329.PDF icon Technical Report (1.35 MB)
J. Jancsary, Nowozin, S., and Rother, C., Learning convex QP relaxations for structured prediction, in 30th International Conference on Machine Learning, ICML 2013, 2013, pp. 1952–1960.
P. Yarlagadda, Eigenstetter, A., and Ommer, B., Learning Discriminative Chamfer Regularization, in BMVC, 2012, p. 1--11.
M. Hoai, Torresani, L., De La Torre, F., and Rother, C., Learning discriminative localization from weakly labeled data, in Pattern Recognition, 2014, vol. 47, pp. 1523–1534.
M. Schiegg, Diego, F., and Hamprecht, F. A., Learning Diverse Models: The Coulomb Structured Support Vector Machine, ECCV. Proceedings, vol. LNCS 9907. Springer, pp. 585-599, 2016.PDF icon Technical Report (2.54 MB)
B. Antic and Ommer, B., Learning Latent Constituents for Recognition of Group Activities in Video, in Proceedings of the European Conference on Computer Vision (ECCV) (Oral), 2014, p. 33--47.PDF icon Technical Report (4.54 MB)
E. Brachmann and Rother, C., Learning Less is More - 6D Camera Localization via 3D Surface Regression, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018, pp. 4654–4662.
F. Diego and Hamprecht, F. A., Learning Multi-Level Sparse Representation, in NIPS. Proceedings, 2013.PDF icon Technical Report (2.79 MB)
F. Diego and Hamprecht, F. A., Learning Multi-Level Sparse Representation for Identifying Neuronal Activity, in Signal Processing with Adaptive Sparse Structured Representations Workshop (SPARS). Book of Abstracts., 2013.PDF icon Technical Report (1.05 MB)
M. Afifi, Derpanis, K. G., Ommer, B., and Brown, M. S., Learning Multi-Scale Photo Exposure Correction, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
M. Bergtholdt, Kappes, J. H., and Schnörr, C., Learning of Graphical Models and Efficient Inference for Object Class Recognition, in Proc. DAGM 2006, 2006, vol. 375-388, pp. 375-388.
M. Jehle, Sommer, C., and Jähne, B., Learning of Optimal Illumination for Material Classification, in Proceedings of the 32nd DAGM Symposium on Pattern Recognition, Darmstadt, Germany, 2010, pp. 563-572.
M. Jehle, Sommer, C., and Jähne, B., Learning of optimal illumination for material classification, in Pattern Recognition, 2010, vol. 6376, p. 563--572.
M. Haußmann, Gerwinn, S., Look, A., Rakitsch, B., and Kandemir, M., Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes, International Conference on Artificial Intelligence and Statistics , vol. PMLR 130. pp. 478-486, 2021.
M. Heiler and Schnörr, C., Learning Sparse Image Codes by Convex Programming, in Proc. Tenth IEEE Int. Conf. Computer Vision (ICCV'05), Beijing, China, 2005, pp. 1667-1674.
M. Heiler and Schnörr, C., Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Programming, J. Mach. Learning Res., vol. 7, pp. 1385–1407, 2006.
M. Weiler, Hamprecht, F. A., and Storath, M., Learning Steerable Filters for Rotation Equivariant CNNs, CVPR. Proceedings. pp. 849-858, 2018.PDF icon Technical Report (1.35 MB)
M. Weiler, Learning Steerable Filters for Rotation Equivariant Convolutional Neural Networks, Heidelberg University, 2017.
B. Ommer and Buhmann, J. M., Learning the Compositional Nature of Visual Object Categories for Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, p. 501--516, 2010.PDF icon Technical Report (2.78 MB)
B. Ommer and Buhmann, J. M., Learning the Compositional Nature of Visual Objects, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007, p. 1--8.PDF icon Technical Report (2.78 MB)
M. von Borstel, Learning to Count from Weak Supervision, University of Heidelberg, 2016.
L. Fiaschi, Nair, R., Köthe, U., and Hamprecht, F. A., Learning to Count with Regression Forest and Structured Labels, ICPR 2012. Proceedings, pp. 2685-2688, 2012.PDF icon Technical Report (3.66 MB)
O. Ghori, Mackowiak, R., Bautista, M., Beuter, N., Drumond, L., Diego, F., and Ommer, B., Learning to Forecast Pedestrian Intention from Pose Dynamics, in Intelligent Vehicles, IEEE, 2018, 2018.
J. Kruse, Rother, C., Schmidt, U., and Dresden, T. U., Learning to Push the Limits of Efficient FFT-based Image Deconvolution - Supplemental Material, 2017.
J. Kruse, Rother, C., and Schmidt, U., Learning to Push the Limits of Efficient FFT-Based Image Deconvolution, in Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 4596–4604.
X. Lou and Hamprecht, F. A., Learning to Segment Dense Cell Nuclei with Shape Prior, CVPR 2012. Proceedings, pp. 1012-1018, 2012.PDF icon Technical Report (2.66 MB)

Pages