Publications

Export 1965 results:
Author [ Title(Desc)] Type Year
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
T. Kröger, Mikula, S., Denk, W., Köthe, U., and Hamprecht, F. A., Learning to Segment Neurons with Non-local Quality Measures, in MICCAI 2013. Proceedings, part II, 2013, vol. 8150, pp. 419-427.PDF icon Technical Report (2.87 MB)
J. Funke, Hamprecht, F. A., and Zhang, C., Learning to Segment: Training Hierarchical Segmentation under a Topological Loss, in MICCAI. Proceedings, Part III, 2015, vol. 9351, pp. 268-275.PDF icon Technical Report (2.92 MB)
T. Leistner, Schilling, H., Mackowiak, R., Gumhold, S., and Rother, C., Learning to Think Outside the Box: Wide-Baseline Light Field Depth Estimation with EPI-Shift, in Proceedings - 2019 International Conference on 3D Vision, 3DV 2019, 2019, pp. 249–257.PDF icon PDF (8.94 MB)
B. Ommer, Sauter, M., and M., B. J., Learning Top-Down Grouping of Compositional Hierarchies for Recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Perceptual Organization in Computer Vision, 2006, p. 194--194.PDF icon Technical Report (358.98 KB)
D. Cremers, Schnörr, C., Weickert, J., and Schellewald, C., Learning Translation Invariant Shape Knowledge for Steering Diffusion-Snakes, in 3rd Workshop on Dynamic Perception, Berlin, Germany, 2000, vol. 9, pp. 117–122.
M. Bautista, Fuchs, P., and Ommer, B., Learning Where to Drive by Watching Others, Proceedings of the German Conference Pattern Recognition, vol. 1. Springer-Verlag, Basel, 2017.
C. Sommer, Fiaschi, L., Hamprecht, F. A., and Gerlich, D., Learning-based Mitotic Cell Detection in Histopathological Images, ICPR 2012. Proceedings, pp. 2306-2309, 2012.PDF icon Technical Report (1.96 MB)
T. Kröger, Learning-based Segmentation for Connectomics. University of Heidelberg, 2014.
E. Kirschbaum, Haußmann, M., Wolf, S., Sonntag, H., Schneider, J., Elzoheiry, S., Kann, O., Durstewitz, D., and Hamprecht, F. A., LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos, ICLR. Proceedings. 2019.
B. Antic, Milbich, T., and Ommer, B., Less is More: Video Trimming for Action Recognition, in Proceedings of the IEEE International Conference on Computer Vision, Workshop on Understanding Human Activities: Context and Interaction, 2013, p. 515--521.PDF icon Technical Report (984.89 KB)
T. Münsterer, LIF Investigation of the Mechanisms Controlling Air--Water Mass Transfer at a Free Interface. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 1996.
T. Münsterer and Jähne, B., LIF measurements of concentration profiles in the aqueous mass boundary layer, Exp. Fluids, vol. 25, p. 190--196, 1998.
T. Münsterer and Jähne, B., A LIF technique for the measurement of concentration profiles in the aqueous mass boundary layer, in Proc.\ 7th Intern.\ Symp.\ on Appl.\ of Laser Techn.\ to Fluid Mechanics, Lisbon, Portugal, July 11.--14. 1994, 1994, vol. II, p. 29.4.1--5.
B. Krolla, Diebold, M., and Stricker, D., Light Field from Smartphone-Based Dual Video, in Computer Vision - ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part II, Cham: Springer International Publishing, 2015, pp. 600–610.
M. Diebold, Blum, O., Gutsche, M., Wanner, S., Garbe, C. S., Baker, H., and Jähne, B., Light-field camera design for high-accuracy depth estimation, Videometrics, Range Imaging, and Applications XIII. 2015.
M. Diebold, Blum, O., Gutsche, M., Wanner, S., Garbe, C., Baker, H., and Jähne, B., Light-field camera design for high-accuracy depth estimation, in Videometrics, Range Imaging, and Applications XIII, 2015.
M. Diebold, Light-Field Imaging and Heterogeneous Light Fields, vol. Dissertation. IWR, Univ. Heidelberg, 2016.
W. Peckar, Schnörr, C., Rohr, K., Stiehl, H. –S., and Spetzger, U., Linear and Incremental Estimation of Elastic Deformations in Medical Registration Using Prescribed Displacements, Machine Graphics & Vision, vol. 7, pp. 807–829, 1998.
H. Scharr and Küsters, R., A linear model for simultaneous estimation of 3D motion and depth, in Proceedins of IEEE Workshop on Motion and Video Computing 2002, Orlando, 2002.
C. Rother and Carlsson, S., Linear multi view reconstruction and camera recovery, in Proceedings of the IEEE International Conference on Computer Vision, 2001, vol. 1, pp. 42–49.
C. Rother and Carlsson, S., Linear multi view reconstruction and camera recovery using a reference plane, International Journal of Computer Vision, vol. 49, pp. 117–141, 2002.
C. Rother and Carlsson, S., Linear multi view reconstruction with missing data, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2002, vol. 2351, pp. 209–324.
C. Rother, Linear Multi-View Reconstruction for Translating Cameras, Nada.Kth.Se, 2003.
C. Rother, Linear multi-view reconstruction of points, lines, planes and cameras using a reference plane, in Proceedings of the IEEE International Conference on Computer Vision, 2003, vol. 2, pp. 1210–1217.
S. Weber, Schüle, T., Schnörr, C., and Hornegger, J., A Linear Programming Approach to Limited Angle 3D Reconstruction from DSA Projections, Methods of Information in Medicine, vol. 43, pp. 320–326, 2004.
S. Weber, Schüle, T., Schnörr, C., and Hornegger, J., A Linear Programming Approach to Limited Angle 3D Reconstruction from DSA Projections, in Bildverarbeitung für die Medizin 2003, 2003, pp. 41–45.
S. Weber, Schnörr, C., and Hornegger, J., A Linear Programming Relaxation for Binary Tomography with Smoothness Priors, in Proc. Int. Workshop on Combinatorial Image Analysis (IWCIA'03), Palermo, Italy, 2003.
B. Jähne, Jähne, B., and Haußecker, H., Local averaging, Handbook of Computer Vision and Applications. Volume II: Signal Processing and Pattern Recognition. Academic Press, p. 153--174, 1999.
H. Spies, Dierig, T., Garbe, C. S., and Würtz, R. P., Local models for dynamic processes in image sequences, in Dynamic Perception, 2002, p. 59--64.
J. Fehr, Local Rotation Invariant Patch Descriptors for 3D Vector Fields, Pattern Recognition, International Conference on, Istanbul, Turkey, August 23-26, 2010, pp. 1381-1384, 2010.
J. Fehr and Burkhardt, H., Local Rotation Invariant Patch Descriptors for 3D Vector Fields, in to be submitted, 2009.
E. Bodnariuc, Petra, S., Schnörr, C., and Voorneveld, J., A Local Spatio-Temporal Approach to Plane Wave Ultrasound Particle Image Velocimetry, in Proc. GCPR, 2017.
B. Jähne, Jähne, B., and Haußecker, H., Local structure, Handbook of Computer Vision and Applications. Volume II: Signal Processing and Pattern Recognition. Academic Press, p. 209--238, 1999.
A. Haja, Jähne, B., and Abraham, S., Localization accuracy of region detectors, in Proceedings CVPR'08, 2008.
W. Li, Hosseini Jafari, O., and Rother, C., Localizing Common Objects Using Common Component Activation Map, 2019.

Pages