Publications

Export 7 results:
[ Author(Asc)] Title Type Year
Filters: Author is Manuel Haußmann  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
M. Haußmann, Hamprecht, F. A., and Kandemir, M., Variational Bayesian Multiple Instance Learning with Gaussian Processes, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6570-6579, 2017.PDF icon Technical Report (1.29 MB)
M. Haußmann, Weakly Supervised Detection with Gaussian Processes, University of Heidelberg, 2016.
M. Haußmann, Hamprecht, F. A., and Kandemir, M., Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation, UAI. Proceedings. pp. 563-573, 2019.PDF icon Technical Report (1.04 MB)
M. Haußmann, Hamprecht, F. A., and Kandemir, M., Deep Active Learning with Adaptive Acquisition, IJCAI. Proceedings. pp. 2470-2476, 2019.PDF icon Technical Report (137.6 KB)
M. Haußmann, Gerwinn, S., and Kandemir, M., Bayesian Prior Networks with PAC Training, arXiv preprint arXiv:1906.00816, 2019.
M. Haußmann, Gerwinn, S., and Kandemir, M., Bayesian Evidential Deep Learning with PAC Regularization , 3rd Symposium on Advances in Approximate Bayesian Inference . 2020.
M. Haußmann, Gerwinn, S., Look, A., Rakitsch, B., and Kandemir, M., Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes, International Conference on Artificial Intelligence and Statistics , vol. PMLR 130. pp. 478-486, 2021.