Publications

Export 114 results:
Author Title [ Type(Asc)] Year
Filters: Author is Björn Ommer  [Clear All Filters]
Journal Article
T. Milbich, Ghori, O., and Ommer, B., Unsupervised Representation Learning by Discovering Reliable Image Relations, Pattern Recognition, vol. 102, 2020.
B. Brattoli, Büchler, U., Dorkenwald, M., Reiser, P., Filli, L., Helmchen, F., Wahl, A. - S., and Ommer, B., Unsupervised behaviour analysis and magnification (uBAM) using deep learning, Nature Machine Intelligence, 2021.
S. Lang and Ommer, B., Transforming Information Into Knowledge: How Computational Methods Reshape Art History, Digital Humanities Quaterly (DHQ), vol. 15, no. 3, 2021.
S. Lang and Ommer, B., Transforming Information Into Knowledge: How Computational Methods Reshape Art History, Digital Humanities Quaterly (DHQ), vol. 15, no. 3, 2021.
P. Bell and Ommer, B., Training Argus, Kunstchronik. Monatsschrift für Kunstwissenschaft, Museumswesen und Denkmalpflege, vol. 68, p. 414--420, 2015.
B. Antic and Ommer, B., Spatio-temporal Video Parsing for Abnormality Detection, arXiv, vol. abs/1502.06235, 2015.PDF icon Technical Report (4.61 MB)
T. Milbich, Roth, K., Brattoli, B., and Ommer, B., Sharing Matters for Generalization in Deep Metric Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
B. Ommer, Mader, T., and Buhmann, J. M., Seeing the Objects Behind the Dots: Recognition in Videos from a Moving Camera, International Journal of Computer Vision, vol. 83, p. 57--71, 2009.PDF icon Technical Report (9.61 MB)
S. Lang and Ommer, B., Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods, Arts, Computational Aesthetics, vol. 7, 64, no. 64, 2018.PDF icon arts-07-00064.pdf (4.6 MB)
A. - S. Wahl, Büchler, U., Brändli, A., Brattoli, B., Musall, S., Kasper, H., Ineichen, B. V., Helmchen, F., Ommer, B., and Schwab, M. E., Optogenetically stimulating the intact corticospinal tract post-stroke restores motor control through regionalized functional circuit formation, Nature Communications, p. (ASW & UB contributed equally; BO and MES contributed equally), 2017.
P. Bell, Schlecht, J., and Ommer, B., Nonverbal Communication in Medieval Illustrations Revisited by Computer Vision and Art History, Visual Resources Journal, Special Issue on Digital Art History, vol. 29, p. 26--37, 2013.
A. Monroy, Bell, P., and Ommer, B., Morphological Analysis for Investigating Artistic Images, Image and Vision Computing, vol. 32, p. 414--423, 2014.PDF icon Technical Report (2.86 MB)
B. Ommer and Buhmann, J. M., Learning the Compositional Nature of Visual Object Categories for Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, p. 501--516, 2010.PDF icon Technical Report (2.78 MB)
A. Sanakoyeu, Ma, P., Tschernezki, V., and Ommer, B., Improving Deep Metric Learning by Divide and Conquer, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
J. C. Rubio, Eigenstetter, A., and Ommer, B., Generative Regularization with Latent Topics for Discriminative Object Recognition, Pattern Recognition, vol. 48, p. 3871--3880, 2015.PDF icon Technical Report (5.49 MB)
A. - S. Wahl, Erlebach, E., Brattoli, B., Büchler, U., Kaiser, J., Ineichen, V. B., Mosberger, A. C., Schneeberger, S., Imobersteg, S., Wieckhorst, M., Stirn, M., Schroeter, A., Ommer, B., and Schwab, M. E., Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats, Sage Journals, vol. Journal of Cerebral Blood Flow & Metabolism, 2018.PDF icon 0271678x18777661.pdf (770.87 KB)
A. Sanakoyeu, Bautista, M., and Ommer, B., Deep Unsupervised Learning of Visual Similarities, Pattern Recognition, vol. 78, 2018.PDF icon PDF (8.35 MB)
T. Dencker, Klinkisch, P., Maul, S. M., and Ommer, B., Deep learning of cuneiform sign detection with weak supervision using transliteration alignment, PLoS ONE, vol. 15, no. 12, 2020.
P. Yarlagadda and Ommer, B., Beyond the Sum of Parts: Voting with Groups of Dependent Entities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, p. 1134--1147, 2015.
S. Lang and Ommer, B., Attesting Similarity: Supporting the Organization and Study of Art Image Collections with Computer Vision, Digital Scholarship in the Humanities, Oxford University Press, vol. 33, no. 4, pp. 845-856, 2018.
A. - S. Wahl, Omlor, W., Rubio, J. C., Chen, J. L., Zheng, H., Schröter, A., Gullo, M., Weinmann, O., Kobayashi, K., Helmchen, F., Ommer, B., and Schwab, M. E., Asynchronous Therapy Restores Motor Control by Rewiring of the Rat Corticospinal Tract after Stroke, Science, vol. 344, p. 1250--1255, 2014.
Conference Proceedings
D. Kotovenko, Sanakoyeu, A., Lang, S., Ma, P., and Ommer, B., Using a Transformation Content Block For Image Style Transfer, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019.
S. Braun, Esser, P., and Ommer, B., Unsupervised Part Discovery by Unsupervised Disentanglement, Proceedings of the German Conference on Pattern Recognition (GCPR) (Oral). Tübingen, 2020.
M. Dorkenwald, Büchler, U., and Ommer, B., Unsupervised Magnification of Posture Deviations Across Subjects, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020.PDF icon article.pdf (1.15 MB)
A. Blattmann, Milbich, T., Dorkenwald, M., and Ommer, B., Understanding Object Dynamics for Interactive Image-to-Video Synthesis, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
P. Esser, Rombach, R., and Ommer, B., Taming Transformers for High-Resolution Image Synthesis, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
M. Dorkenwald, Milbich, T., Blattmann, A., Rombach, R., Derpanis, K. G., and Ommer, B., Stochastic Image-to-Video Synthesis usin cINNs, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
M. Amirul Islam, Kowal, M., Esser, P., Jia, S., Ommer, B., Derpanis, K. G., and Bruce, N., Shape or Texture: Understanding Discriminative Features in CNNs, International Conference on Learning Representations (ICLR). 2021.
K. Roth, Milbich, T., Ommer, B., Cohen, J. Paul, and Ghassemi, M., S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning, Proceedings of International Conference on Machine Learning (ICML). 2021.
K. Roth, Milbich, T., Sinha, S., Gupta, P., Ommer, B., and Cohen, J. Paul, Revisiting Training Strategies and Generalization Performance in Deep Metric Learning, International Conference on Machine Learning (ICML). 2020.
D. Kotovenko, Wright, M., Heimbrecht, A., and Ommer, B., Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
S. Lang and Ommer, B., Reflecting on How Artworks Are Processed and Analyzed by Computer Vision, European Conference on Computer Vision (ECCV - VISART). Springer, 2018.
N. Ufer, Lang, S., and Ommer, B., Object Retrieval and Localization in Large Art Collections Using Deep Multi-style Feature Fusion and Iterative Voting, IEEE European Conference on Computer Vision (ECCV), VISART Workshop . 2020.PDF icon Paper (1.03 MB)
R. Rombach, Esser, P., and Ommer, B., Network-to-Network Translation with Conditional Invertible Neural Networks, Neural Information Processing Systems (NeurIPS) (Oral). 2020.

Pages