Export 180 results:
Author [ Title(Asc)] Type Year
Filters: Author is Schnörr, C.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Schnörr, C, Schüle, T and Weber, S (2007). Variational Reconstruction with DC-Programming. Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston
Savarino, F and Schnörr, C (2019). A Variational Perspective on the Assignment Flow. Proc. SSVM. Springer
Ruhnau, P, Kohlberger, T, Nobach, H and Schnörr, C (2005). Variational Optical Flow Estimation for Particle Image Velocimetry. Experiments in Fluids. 38 21–32
Ruhnau, P, Kohlberger, T, Nobach, H and Schnörr, C (2004). Variational Optical Flow Estimation for Particle Image Velocimetry. Proc. Lasermethoden in der Strömungsmeßtechnik. Deutsche Gesellschaft für Laser-Anemometrie GALA e.V., Karlsruhe
Weickert, J and Schnörr, C (2001). Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint. J. Math. Imaging and Vision. 14 245–255
Schnörr, (1999). Variational Methods for Adaptive Image Smoothing and Segmentation. Handbook on Computer Vision and Applications: Signal Processing and Pattern Recognition. Academic Press, San Diego. 2 451–484
Schnörr, C and Weickert, J (2000). Variational Image Motion Computation: Theoretical Framework, Problems and Perspectives. Mustererkennung 2000. Springer, Kiel, Germany
(2005). Variational, Geometric and Level Sets in Computer Vision (VLSM'05). lncs. Springer, Beijing, China. 3752
Heitz, D, Mémin, E and Schnörr, C (2010). Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids. 48 369-393
Ruhnau, P, Stahl, A and Schnörr, C (2007). Variational Estimation of Experimental Fluid Flows with Physics-Based Spatio-Temporal Regularization. Measurement Science and Technology. 18 755-763
Kohlberger, T, Mémin, E and Schnörr, C (2003). Variational Dense Motion Estimation Using the Helmholtz Decomposition. Scale Space Methods in Computer Vision. Springer. 2695 432–448
Schnörr, (1998). Variational approaches to Image Segmentation and Feature Extraction. University of Hamburg, Comp. Sci. Dept., Hamburg, Germany
Vlasenko, A and Schnörr, C (2009). Variational Approaches for Model-Based PIV and Visual Fluid Analysis. Imaging Measurement Methods for Flow Analysis. Springer. 106 247-256
Schnörr, C, Sprengel, R and Neumann, B (1996). A Variational Approach to the Design of Early Vision Algorithms. Computing Suppl. 11 149-165
Ruhnau, P, Gütter, C, Putze, T and Schnörr, C (2005). A variational approach for particle tracking velocimetry. Meas. Science and Techn. 16 1449-1458
Schnörr, (2000). Variational Adaptive Smoothing and Segmentation. Computer Vision and Applications: A Guide for Students and Practitioners. Academic Press, San Diego. 459–482