Publications

Export 223 results:
Author Title Type [ Year(Desc)]
Filters: Author is Christoph Schnörr  [Clear All Filters]
2000
Cremers, D, Schnörr, C, Weickert, J and Schellewald, C (2000). Diffusion Snakes Using Statistical Shape Knowledge. Proc. Algebraic Frames for the Perception-Action Cycle. Springer, Kiel. 1888 164–174
Cremers, D, Schnörr, C, Weickert, J and Schellewald, C (2000). Learning Translation Invariant Shape Knowledge for Steering Diffusion-Snakes. 3rd Workshop on Dynamic Perception. Akad. Verlagsges., Berlin, Germany. 9 117–122
2001
Cremers, D, Schnörr, C and Weickert, J (2001). Diffusion–Snakes: Combining Statistical Shape Knowledge and Image Information in a Variational Framework. IEEE First Workshop on Variational and Level Set Methods in Computer Vision. IEEE Comp. Soc., Vancouver, Canada. 237–244
Cremers, D, Kohlberger, T and Schnörr, C (2001). Nonlinear Shape Statistics via Kernel Spaces. Mustererkennung 2001. Springer, Munich, Germany. 2191 269–276
Cremers, D, Kohlberger, T and Schnörr, C (2001). Nonlinear Shape Statistics via Kernel Spaces. Mustererkennung 2001. Springer. 2191 269--276PDF icon Technical Report (324.55 KB)
2002
Hinterberger, W, Scherzer, O, Schnörr, C and Weickert, J (2002). Analysis of Optical Flow Models in the Framework of Calculus of Variations. Numer. Funct. Anal. Optimiz. 23 69–89
Bruhn, A, Weickert, J and Schnörr, C (2002). Combining the Advantages of Local and Global Optic Flow Methods. Pattern Recognition, Proc. 24th DAGM Symposium. Springer, Zürich, Switzerland. 2449 454–462
Bruhn, A, Jakob, T, Fischer, M, Kohlberger, T, Weickert, J, Brüning, U and Schnörr, C (2002). Designing 3–D Nonlinear Diffusion Filters for High Performance Cluster Computing. Pattern Recognition, Proc. 24th DAGM Symposium. Springer, Zürich, Switzerland. 2449 290–297
Cremers, D, Tischhäuser, F, Weickert, J and Schnörr, C (2002). Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford–Shah functional. Int. J. Computer Vision. 50 295–313
Cremers, D and Schnörr, C (2002). Motion Competition: Variational Integration of Motion Segmentation and Shape Regularization. Pattern Recognition, Proc. 24th DAGM Symposium. Springer, Zürich, Switzerland. 2449 472–480
Cremers, D, Kohlberger, T and Schnörr, C (2002). Nonlinear Shape Statistics in Mumford-Shah Based Segmentation. Computer Vision – ECCV 2002). Springer Verlag. 2351 93–108
Cremers, D, Kohlberger, T and Schnörr, C (2002). Nonlinear Shape Statistics in Mumford-Shah Based Segmentation. Computer Vision -- ECCV 2002). Springer Verlag. 2351 93--108PDF icon Technical Report (636.58 KB)
2003
Bruhn, A, Weickert, J, Feddern, C, Kohlberger, T and Schnörr, C (2003). Real-Time Optic Flow Computation with Variational Methods. Proc. Computer Analysis of Images and Patterns (CAIP'03). Springer. 2756 222-229
Cremers, D, Kohlberger, T and Schnörr, C (2003). Shape Statistics in Kernel Space for Variational Image Segmentation. Pattern Recognition. 36 1929--1943PDF icon Technical Report (1.67 MB)
Cremers, D, Kohlberger, T and Schnörr, C (2003). Shape Statistics in Kernel Space for Variational Image Segmentation. Pattern Recognition. 36 1929–1943
Cremers, D and Schnörr, C (2003). Statistical Shape Knowledge in Variational Motion Segmentation. Image and Vision Comp. 21 77-86
Cremers, D, Sochen, N and Schnörr, C (2003). Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling. Scale Space Methods in Computer Vision. Springer. 2695 388--400PDF icon Technical Report (451.82 KB)
Cremers, D, Sochen, N and Schnörr, C (2003). Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling. Scale Space Methods in Computer Vision. Springer. 2695 388–400
Bruhn, A, Weickert, J, Feddern, C, Kohlberger, T and Schnörr, C (2003). Variational Optic Flow Computation In Real-Time. Dept. Math. and Comp. Science, Saarland University, Germany
2005
Bruhn, A, Weickert, J, Kohlberger, T and Schnörr, C (2005). Discontinuity-Preserving Computation of Variational Optic Flow in Real-Time. Scale-Space 2005. Springer. 3459 279–290
Bruhn, A, Weickert, J and Schnörr, C (2005). Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods. 61 211-231
Welk, M, Becker, F, Schnörr, C and Weickert, J (2005). Matrix-Valued Filters as Convex Programs. Scale-Space 2005. Springer. 3459 204–216
Bergtholdt, M and Schnörr, C (2005). Shape Priors and Online Appearance Learning for Variational Segmentation and Object Recognition in Static Scenes. Pattern Recognition, Proc. 27th DAGM Symposium. Springer. 3663 342–350
Yuan, J, Schnörr, C, Steidl, G and Becker, F (2005). A Study of Non-Smooth Convex Flow Decomposition. Proc. Variational, Geometric and Level Set Methods in Computer Vision. Springer. 3752 1–12
Bruhn, A, Weickert, J, Feddern, C, Kohlberger, T and Schnörr, C (2005). Variational optic flow computation in real-time. IEEE Trans. Image Proc. 14 608–615
Ruhnau, P, Kohlberger, T, Nobach, H and Schnörr, C (2005). Variational Optical Flow Estimation for Particle Image Velocimetry. Experiments in Fluids. 38 21--32PDF icon Technical Report (1.21 MB)
Bergtholdt, M, Cremers, D and Schnörr, C (2005). Variational Segmentation with Shape Priors. Handbook of Mathematical Models in Computer Vision. Springer. 147-160
2006
Weber, S, Nagy, A, Schüle, T, Schnörr, C and Kuba, A (2006). A Benchmark Evaluation of Large-Scale Optimization Approaches to Binary Tomography. Discrete Geometry for Computer Imagery (DGCI 2006). Springer. 4245 146-156PDF icon Technical Report (301.1 KB)
Weber, S, Schüle, T, Schnörr, C and Kuba, A (2006). Binary Tomography with Deblurring. Combinatorial Image Analysis. Springer. 4040 375-388PDF icon Technical Report (803.63 KB)
Heiler, M and Schnörr, C (2006). Controlling Sparseness in Non-negative Tensor Factorization. Computer Vision -- ECCV 2006. Springer. 3951 56-67PDF icon Technical Report (568.86 KB)
Stahl, A, Ruhnau, P and Schnörr, C (2006). A Distributed Parameter Approach to Dynamic Image Motion. ECCV 2006, International Workshop on The Representation and Use of Prior Knowledge in Vision. LNCS, SpringerPDF icon Technical Report (1.24 MB)

Pages