Publications

Export 277 results:
Author [ Title(Desc)] Type Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Petra, S, Popa, C and Schnörr, C (2009). Accelerating Constrained Sirt With Applications In Tomographic Particle Image Reconstruction. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9477PDF icon Technical Report (3.33 MB)
Kondermann, C, Kondermann, D, Jähne, B, Garbe, C S, Schnörr, C and Jähne, B (2007). An adaptive confidence measure for optical flows based on linear subspace projections. Proceedings of the 29th DAGM Symposium on Pattern Recognition. Springer. 4713 132--141
Bodnariuc, E, Gurung, A, Petra, S and Schnörr, C (2015). Adaptive Dictionary-Based Spatio-temporal Flow Estimation for Echo PIV. EMMCVPR
Bodnariuc, E, Gurung, A, Petra, S and Schnörr, C (2015). Adaptive Dictionary-Based Spatio-temporal Flow Estimation for Echo PIV. Proc.~EMMCVPR. Springer. 8932 378--391PDF icon Technical Report (951.37 KB)
Schüle, T, Weber, S and Schnörr, C (2005). Adaptive Reconstruction of Discrete-Valued Objects from few Projections. Electr.~Notes in Discr.~Math. 20 365-384
Hinterberger, W, Scherzer, O, Schnörr, C and Weickert, J (2002). Analysis of Optical Flow Models in the Framework of Calculus of Variations. Numer. Funct. Anal. Optimiz. 23 69--89
Schellewald, C, Roth, S and Schnörr, C (2001). Application Of Convex Optimization Techniques To The Relational Matching Of Object Views. Dept.~Math.~and Comp.~Science
Gianniotis, N, Schnörr, C, Molkenthin, C and Bora, S S (2015). Approximate variational inference based on a finite sample of Gaussian latent variables. Patt.~Anal.~ApplPDF icon Technical Report (1.4 MB)
Schnörr, C, Niemann, H and Kopecz, J (1993). Architekturkonzepte zur Bildauswertung. Grundlagen und Anwendungen der Künstlichen Intelligenz, 17. Fachtagung für Künstliche Intelligenz. Springer-Verlag. 268--274
Bister, D, Rohr, K and Schnörr, C (1990). Automatische Bestimmung der Trajektorien von sich bewegenden Objekten aus einer Grauwertbildfolge. Mustererkennung 1990, 12. DAGM-Symposium. Springer-Verlag. 254 44--51
Petra, S and Schnörr, C (2014). Average Case Recovery Analysis of Tomographic Compressive Sensing. Linear Algebra and its Applications. 441 168-198PDF icon Technical Report (1.85 MB)
B
Giebel, J, Gavrila, D M and Schnörr, C (2004). A Bayesian Framework for Multi-cue 3D Object Tracking. Computer Vision -- ECCV 2004. Springer. 3024 241-252
Weber, S, Nagy, A, Schüle, T, Schnörr, C and Kuba, A (2006). A Benchmark Evaluation of Large-Scale Optimization Approaches to Binary Tomography. Discrete Geometry for Computer Imagery (DGCI 2006). Springer. 4245 146-156PDF icon Technical Report (301.1 KB)
Schnörr, (1994). Bewegungssegmentation von Bildfolgen durch die Minimierung konvexer nicht-quadratischer Funktionale. Mustererkennung 1994. Technische Universität Wien. 5 178--185
Keuchel, J, Schnörr, C, Schellewald, C and Cremers, D (2003). Binary Partitioning, Perceptual Grouping, and Restoration with Semidefinite Programming. PAMI. 25 1364--1379
Weber, S, Schnörr, C, Schüle, T and Hornegger, J (2005). Binary Tomography by Iterating Linear Programs. Geometric Properties from Incomplete Data. Springer
Weber, S, Schüle, T, Hornegger, J and Schnörr, C (2004). Binary Tomography by Iterating Linear Programs from Noisy Projections. Combinatorial Image Analysis, Proc.~Int.~Workshop on Combinatorial Image Analysis (IWCIA'04). Springer Verlag. 3322 38--51
Weber, S, Schüle, T, Schnörr, C and Kuba, A (2006). Binary Tomography with Deblurring. Combinatorial Image Analysis. Springer. 4040 375-388PDF icon Technical Report (803.63 KB)
Petra, S, Schnörr, C, Becker, F and Lenzen, F (2013). B-SMART: Bregman-Based First-Order Algorithms for Non-Negative Compressed Sensing Problems. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM. 110-124
Petra, S, Schnörr, C, Becker, F and Lenzen, F (2013). B-SMART: Bregman-Based First-Order Algorithms for Non-Negative Compressed Sensing Problems. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM) 2013. Springer. 7893 110-124PDF icon Technical Report (1.15 MB)
Heikkonen, J, Koikkalainen, P and Schnörr, C (1994). Building Trajectories via Selforganization from Spatiotemporal Features. 12th Int. Conf. on Pattern Recognition
Kappes, J H, Savchynskyy, B and Schnörr, C (2012). A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation. CVPRPDF icon Technical Report (430.63 KB)
Kappes, J H, Savchynskyy, B and Schnörr, C (2012). A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation. CVPR. Proceedings. 1688-1695
C
Heers, J, Schnörr, C and Stiehl, H S (1998). A class of parallel algorithms for nonlinear variational image segmentation. Proc.~Noblesse Workshop on Non--Linear Model Based Image Analysis (NMBIA'98)
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2013). A class of quasi-variational inequalities for adaptive image denoising and decomposition. Computational Optimization and Applications. Springer Netherlands. 54 371-398. http://dx.doi.org/10.1007/s10589-012-9456-0PDF icon Technical Report (748.66 KB)
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2013). A Class of Quasi-Variational Inequalities for Adaptive Image Denoising and Decomposition. Computational Optimization and Applications (COAP). 54 (2) 371-398
Breitenreicher, D, Lellmann, J and Schnörr, C (2013). COAL: a generic modelling and prototyping framework for convex optimization problems of variational image analysis. Optimization Methods and Software. 28 1081-1094. http://www.tandfonline.com/doi/abs/10.1080/10556788.2012.672571PDF icon Technical Report (1.69 MB)
Neumann, J, Schnörr, C and Steidl, G (2005). Combined SVM-based Feature Selection and Classification. Machine Learning. 61 129-150
Bruhn, A, Weickert, J and Schnörr, C (2002). Combining the Advantages of Local and Global Optic Flow Methods. Pattern Recognition, Proc.~24th DAGM Symposium. Springer. 2449 454--462
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Sungwoong, K, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems. CVPR 2013. ProceedingsPDF icon Technical Report (1.35 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem. CVPRPDF icon Technical Report (1.35 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. http://arxiv.org/abs/1404.0533

Pages