Publications

Export 82 results:
Author Title [ Type(Asc)] Year
Filters: Author is Björn Ommer  [Clear All Filters]
Journal Article
Bell, P and Ommer, B (2015). Training Argus. Kunstchronik. Monatsschrift für Kunstwissenschaft, Museumswesen und Denkmalpflege. Zentralinstitut für Kunstgeschichte. 68 414--420
Antic, B and Ommer, B (2015). Spatio-temporal Video Parsing for Abnormality Detection. arXiv. abs/1502.06235. http://arxiv.org/abs/1502.06235PDF icon Technical Report (4.61 MB)
Ommer, B, Mader, T and Buhmann, J M (2009). Seeing the Objects Behind the Dots: Recognition in Videos from a Moving Camera. International Journal of Computer Vision. Springer. 83 57--71PDF icon Technical Report (9.61 MB)
Lang, S and Ommer, B (2018). Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods. Arts, Computational Aesthetics. 7, 64PDF icon arts-07-00064.pdf (4.6 MB)
Wahl, A S, Büchler, U, Brändli, A, Brattoli, B, Musall, S, Kasper, H, Ineichen, B V, Helmchen, F, Ommer, B and Schwab, M E (2017). Optogenetically stimulating the intact corticospinal tract post-stroke restores motor control through regionalized functional circuit formation. Nature Communications. (ASW & UB contributed equally; BO and MES contributed equally). https://www.nature.com/articles/s41467-017-01090-6
Bell, P, Schlecht, J and Ommer, B (2013). Nonverbal Communication in Medieval Illustrations Revisited by Computer Vision and Art History. Visual Resources Journal, Special Issue on Digital Art History. Taylor & Francis. 29 26--37. http://www.tandfonline.com/doi/abs/10.1080/01973762.2013.761111
Monroy, A, Bell, P and Ommer, B (2014). Morphological Analysis for Investigating Artistic Images. Image and Vision Computing. Elsevier. 32 414--423PDF icon Technical Report (2.86 MB)
Ommer, B and Buhmann, J M (2010). Learning the Compositional Nature of Visual Object Categories for Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 32 501--516PDF icon Technical Report (2.78 MB)
Rubio, J C, Eigenstetter, A and Ommer, B (2015). Generative Regularization with Latent Topics for Discriminative Object Recognition. Pattern Recognition. Elsevier. 48 3871--3880PDF icon Technical Report (5.49 MB)
Wahl, A S, Erlebach, E, Brattoli, B, Büchler, U, Kaiser, J, Ineichen, V B, Mosberger, A C, Schneeberger, S, Imobersteg, S, Wieckhorst, M, Stirn, M, Schroeter, A, Ommer, B and Schwab, M E (2018). Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats. Sage Journals. Journal of Cerebral Blood Flow & Metabolism. http://journals.sagepub.com/doi/abs/10.1177/0271678X18777661PDF icon 0271678x18777661.pdf (770.87 KB)
Sanakoyeu, A, Bautista, M and Ommer, B (2018). Deep Unsupervised Learning of Visual Similarities. Pattern Recognition. 78. https://authors.elsevier.com/a/1WXUt77nKSb25 PDF icon PDF (8.35 MB)
Yarlagadda, P and Ommer, B (2015). Beyond the Sum of Parts: Voting with Groups of Dependent Entities. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 37 1134--1147. http://www.computer.org/csdl/trans/tp/preprint/06926849.pdf
Lang, S and Ommer, B (2018). Attesting Similarity: Supporting the Organization and Study of Art Image Collections with Computer Vision. Digital Scholarship in the Humanities, Oxford University Press. 33 845-856
Wahl, A S, Omlor, W, Rubio, J C, Chen, J L, Zheng, H, Schröter, A, Gullo, M, Weinmann, O, Kobayashi, K, Helmchen, F, Ommer, B and Schwab, M E (2014). Asynchronous Therapy Restores Motor Control by Rewiring of the Rat Corticospinal Tract after Stroke. Science. American Association for The Advancement of Science. 344 1250--1255. http://www.sciencemag.org/content/344/6189/1250
Conference Proceedings
Kotovenko, D, Sanakoyeu, A, Lang, S, Ma, P and Ommer, B (2019). Using a Transformation Content Block For Image Style Transfer. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Lang, S and Ommer, B (2018). Reflecting on How Artworks Are Processed and Analyzed by Computer Vision. European Conference on Computer Vision (ECCV). Springer
Bautista, M, Fuchs, P and Ommer, B (2017). Learning Where to Drive by Watching Others. Proceedings of the German Conference Pattern Recognition. Springer-Verlag, Basel. 1
Sanakoyeu, A, Tschernezki, V, Büchler, U and Ommer, B (2019). Divide and Conquer the Embedding Space for Metric Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://github.com/CompVis/metric-learning-divide-and-conquer
Monroy, A and Ommer, B (2012). Beyond Bounding-Boxes: Learning Object Shape by Model-driven Grouping. IEEE Transactions on Pattern Analysis and Machine Intelligence. Springer. 7574 582--595PDF icon Technical Report (1.58 MB)
Conference Paper
Blum, O, Brattoli, B and Ommer, B (2018). X-GAN: Improving Generative Adversarial Networks with ConveX Combinations. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, GermanyPDF icon Article (6.65 MB)PDF icon Supplementary material (7.96 MB)PDF icon Oral slides (14.96 MB)
Ufer, N, Lui, K To, Schwarz, K, Warkentin, P and Ommer, B (2019). Weakly Supervised Learning of Dense SemanticCorrespondences and Segmentation. German Conference on Pattern Recognition (GCPR)
Yarlagadda, P, Monroy, A and Ommer, B (2010). Voting by Grouping Dependent Parts. Proceedings of the European Conference on Computer Vision. Springer. 6315 197--210PDF icon Technical Report (2.99 MB)
Eigenstetter, A and Ommer, B (2012). Visual Recognition using Embedded Feature Selection for Curvature Self-Similarity. Proceedings of the Conference on Advances in Neural Information Processing Systems. MIT Press. 377--385PDF icon Technical Report (3.27 MB)
Antic, B and Ommer, B (2011). Video Parsing for Abnormality Detection. Proceedings of the IEEE International Conference on Computer Vision. IEEE. 2415--2422PDF icon Technical Report (990.21 KB)
Esser, P, Sutter, E and Ommer, B (2018). A Variational U-Net for Conditional Appearance and Shape Generation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (short Oral). https://compvis.github.io/vunet/
Milbich, T, Bautista, M, Sutter, E and Ommer, B (2017). Unsupervised Video Understanding by Reconciliation of Posture Similarities. Proceedings of the IEEE International Conference on Computer Vision (ICCV). https://hciweb.iwr.uni-heidelberg.de/compvis/research/tmilbich_iccv17
Esser, P, Haux, J and Ommer, B (2019). Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Lorenz, D, Bereska, L, Milbich, T and Ommer, B (2019). Unsupervised Part-Based Disentangling of Object Shape and Appearance. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Oral + Best paper finalist: top 45 / 5160 submissions)
Esser, P, Haux, J, Milbich, T and Ommer, B (2018). Towards Learning a Realistic Rendering of Human Behavior. European Conference on Computer Vision (HBUGEN)
Yarlagadda, P, Monroy, A, B., C and Ommer, B (2009). Towards a Computer-based Understanding of Medieval Images. Scientific Computing & Cultural Heritage. Springer. 89--97. http://link.springer.com/chapter/10.1007%2F978-3-642-28021-4_10#page-1
Yarlagadda, P, Monroy, A, Carque, B and Ommer, B (2011). Top-down Analysis of Low-level Object Relatedness Leading to Semantic Understanding of Medieval Image Collections. Conference on Computer Vision and Image Analysis of Art II. 7869 61--69PDF icon Technical Report (11.06 MB)
Sanakoyeu, A, Kotovenko, D, Lang, S and Ommer, B (2018). A Style-Aware Content Loss for Real-time HD Style Transfer. Proceedings of the European Conference on Computer Vision (ECCV) (Oral)
Antic, B, Büchler, U, Wahl, A S, Schwab, M E and Ommer, B (2015). Spatiotemporal Parsing of Motor Kinematics for Assessing Stroke Recovery. Medical Image Computing and Computer-Assisted Intervention. SpringerPDF icon Article (2.24 MB)
Monroy, A, Bell, P and Ommer, B (2012). Shaping Art with Art: Morphological Analysis for Investigating Artistic Reproductions. Proceedings of the European Conference on Computer Vision, Workshop on VISART. Springer. 7583 571--580PDF icon Technical Report (7 MB)
Sümer, Ö, Dencker, T and Ommer, B (2017). Self-supervised Learning of Pose Embeddings from Spatiotemporal Relations in Videos. Proceedings of the IEEE International Conference on Computer Vision (ICCV)PDF icon Paper (3.98 MB)PDF icon Supplementary Material (3.36 MB)

Pages