Publications

Export 37 results:
Author Title [ Type(Desc)] Year
Filters: Author is Florian Becker  [Clear All Filters]
Conference Paper
Lenzen, F, Becker, F and Lellmann, J (2013). Adaptive Second-Order Total Variation: An Approach Aware of Slope Discontinuities. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM. Springer. 7893 61-73
Lenzen, F, Becker, F and Lellmann, J (2013). Adaptive Second-Order Total Variation: An Approach Aware of Slope Discontinuities. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM) 2013. Springer. 54 371--398PDF icon Technical Report (702.08 KB)
Petra, S, Schnörr, C, Becker, F and Lenzen, F (2013). B-SMART: Bregman-Based First-Order Algorithms for Non-Negative Compressed Sensing Problems. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM. 110-124
Petra, S, Schnörr, C, Becker, F and Lenzen, F (2013). B-SMART: Bregman-Based First-Order Algorithms for Non-Negative Compressed Sensing Problems. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM) 2013. Springer. 7893 110-124PDF icon Technical Report (1.15 MB)
Lellmann, J, Kappes, J H, Yuan, J, Becker, F, Schnörr, C, Mórken, K and Lysaker, M (2009). Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 150-162
Lellmann, J, Kappes, J H, Yuan, J, Becker, F and Schnörr, C (2009). Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 150-162PDF icon Technical Report (1.75 MB)
Lellmann, J, Becker, F and Schnörr, C (2009). Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers. IEEE International Conference on Computer Vision (ICCV). 646 -- 653PDF icon Technical Report (930.18 KB)
Lellmann, J, Becker, F and Schnörr, C (2009). Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers. Proceedings of the IEEE Conference on Computer Vision (ICCV 09) Kyoto, Japan. 646-653
Becker, F and Schnörr, C (2008). Decomposition of Quadratric Variational Problems. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 325--334PDF icon Technical Report (1.29 MB)
Becker, F and Schnörr, C (2008). Decomposition of Quadratric Variational Problems. Pattern Recognition -- 30th DAGM Symposium. 5096 325--334
Lenzen, F, Kim, K I, Schäfer, H, Nair, R, Meister, S, Becker, F and Garbe, C S (2013). Denoising Strategies for Time-of-Flight Data. Time-of-Flight Imaging: Algorithms, Sensors and Applications. Springer. 8200 24-25
Neufeld, A, Berger, J, Becker, F, Lenzen, F and Schnörr, C (2015). Estimating Vehicle Ego-Motion and Piecewise Planar Scene Structure from Optical Flow in a Continuous Framework. 37th German Conference on Pattern Recognition. Springer, Aachen
Welk, M, Becker, F, Schnörr, C and Weickert, J (2005). Matrix-Valued Filters as Convex Programs. Scale-Space 2005. Springer. 3459 204--216
Berger, J, Neufeld, A, Becker, F, Lenzen, F and Schnörr, C (2015). Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations. Scale Space and Variational Methods in Computer Vision (SSVM 2015). Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-18461-6_32PDF icon Technical Report (364.01 KB)
Yuan, J, Schnörr, C, Steidl, G and Becker, F (2005). A Study of Non-Smooth Convex Flow Decomposition. Proc.~Variational, Geometric and Level Set Methods in Computer Vision. Springer. 3752 1--12
Becker, F, Wieneke, B, Yuan, J and Schnörr, C (2008). A Variational Approach to Adaptive Correlation for Motion Estimation in Particle Image Velocimetry. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 335--344PDF icon Technical Report (1.82 MB)
Becker, F, Wieneke, B, Yuan, J and Schnörr, C (2008). A Variational Approach to Adaptive Correlation for Motion Estimation in Particle Image Velocimetry". Pattern Recognition -- 30th DAGM Symposium. 5096 335-344
Becker, F, Wieneke, B, Yuan, J and Schnörr, C (2008). Variational Correlation Approach to Flow Measurement with Window Adaption. 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 1.1.8
Becker, F, Wieneke, B, Yuan, J and Schnörr, C (2008). Variational Correlation Approach to Flow Measurement with Window Adaption. 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 1.1.3PDF icon Technical Report (3.37 MB)
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2012). Variational Image Denoising with Adaptive Constraint Sets. LNCS. Springer. 206-217PDF icon Technical Report (649.03 KB)
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2011). Variational Image Denoising with Adaptive Constraint Sets. Proceedings of the 3nd International Conference on Scale Space and Variational Methods in Computer Vision 2011, in press. Springer. 6667 206-217
Becker, F, Lenzen, F, Kappes, J H and Schnörr, C (2011). Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. 2011 IEEE International Conference on Computer Vision (ICCV). 1692 -- 1699PDF icon Technical Report (4.9 MB)
Becker, F, Lenzen, F, Kappes, J H and Schnörr, C (2011). Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. 2011 IEEE International Conference on Computer Vision ICCV. 1692-1699
In Collection
Lenzen, F, Kim, K In, Schäfer, H, Nair, R, Meister, S, Becker, F and Garbe, C S (2013). Denoising Strategies for Time-of-Flight Data. Time-of-Flight and Depth Imaging: Sensors, Algorithms, and Applications. Springer. 8200 25-45PDF icon Technical Report (961.62 KB)
Becker, F, Petra, S and Schnörr, C (2014). Optical Flow. Handbook of Mathematical Methods in Imaging. Springer
Journal Article
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2013). A class of quasi-variational inequalities for adaptive image denoising and decomposition. Computational Optimization and Applications. Springer Netherlands. 54 371-398. http://dx.doi.org/10.1007/s10589-012-9456-0PDF icon Technical Report (748.66 KB)
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2013). A Class of Quasi-Variational Inequalities for Adaptive Image Denoising and Decomposition. Computational Optimization and Applications (COAP). 54 (2) 371-398
Welk, M, Weickert, J, Becker, F, Schnörr, C, Feddern, C and Burgeth, B (2007). Median and related local filters for tensor-valued images. Signal Processing. 87 291-308PDF icon Technical Report (1007.29 KB)
Lenzen, F, Lellmann, J, Becker, F and Schnörr, C (2014). Solving Quasi-Variational Inequalities for Image Restoration with Adaptive Constraint Sets. SIAM J.~Imag.~Sci. 7 2139--2174PDF icon Technical Report (802.13 KB)
Lenzen, F, Lellmann, J, Becker, F and Schnörr, C (2014). Solving QVIs for Image Restoration with Adaptive Constraint Sets. SIAM Journal on Imaging Sciences (SIIMS), in press
Becker, F, Wieneke, B, Petra, S, Schröder, A and Schnörr, C (2011). Variational Adaptive Correlation Method for Flow Estimation. IEEE Transactions on Image Processing. 21, 6 3053 - 3065
Becker, F, Wieneke, B, Petra, S, Schröder, A and Schnörr, C (2012). Variational Adaptive Correlation Method for Flow Estimation. IEEE Transactions on Image Processing. 21 3053 -- 3065PDF icon Technical Report (18.81 MB)
Becker, F, Lenzen, F, Kappes, J H and Schnörr, C (2013). Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. International Journal of Computer Vision. Springer US. 105 269--297. http://dx.doi.org/10.1007/s11263-013-0639-7PDF icon Technical Report (15.4 MB)
Becker, F, Lenzen, F, Kappes, J H and Schnörr, C (2013). Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. International Journal of Computer Vision. 105 (3) 269-297

Pages