Publications

Export 277 results:
Author [ Title(Desc)] Type Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. abs/1404.0533. http://hci.iwr.uni-heidelberg.de/opengm2/PDF icon Technical Report (3.32 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. Int.~J.~Comp.~VisionPDF icon Technical Report (5.12 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 1-30PDF icon Technical Report (1.5 MB)
Schnörr, (1992). Computation of Discontinuous Optical Flow by Domain Decomposition and Shape Optimization. IJCV. 8 153--165
Schnörr, (1990). Computation of Discontinuous Optical Flow by Domain Decomposition and Shape Optimization. Proc. British Machine Vision Conference. 109--114
Rathke, F and Schnörr, C (2015). A Computational Approach to Log-Concave Density Estimation. An. St. Univ. Ovidius Constanta. 23 151-166PDF icon Technical Report (1.07 MB)
Rathke, F and Schnörr, C (2015). A Computational Approach to Log-Concave Density Estimation. An. St. Univ. Ovidius Constanta. 23 151-166
Wulf, M, Stiehl, H S and Schnörr, C (2000). On the computational rôle of the primate retina. Proc.~2nd ICSC Symposium on Neural Computation (NC 2000)
Fundana, K, Heyden, A, Gosch, C and Schnörr, C (2008). Continuous Graph Cuts for Prior-Based Object Segmentation. 19th Int.~Conf.~Patt.~Recog.~(ICPR). 1--4PDF icon Technical Report (414.89 KB)
Lellmann, J and Schnörr, C (2011). Continuous Multiclass Labeling Approaches and Algorithms. SIAM J.~Imag.~Sci. 4 1049-1096PDF icon Technical Report (4.31 MB)
Lellmann, J and Schnörr, C (2010). Continuous Multiclass Labeling Approaches And Algorithms. Univ. of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/10460/
Lellmann, J and Schnörr, C (2011). Continuous Multiclass Labeling Approaches and Algorithms. CoRR. abs/1102.5448. http://arxiv.org/abs/1102.5448
Schmitzer, B and Schnörr, C (2013). Contour Manifolds and Optimal Transport
Heiler, M and Schnörr, C (2006). Controlling Sparseness in Non-negative Tensor Factorization. Computer Vision -- ECCV 2006. Springer. 3951 56-67PDF icon Technical Report (568.86 KB)
Yuan, J, Schnörr, C and Steidl, G (2009). Convex Hodge Decomposition and Regularization of Image Flows. J.~Math.~Imag.~Vision. 33 169-177PDF icon Technical Report (1003.75 KB)
Yuan, J, Steidl, G and Schnörr, C (2008). Convex Hodge Decomposition of Image Flows. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 416--425PDF icon Technical Report (290.72 KB)
Lellmann, J, Kappes, J H, Yuan, J, Becker, F and Schnörr, C (2008). Convex Multi-Class Image Labeling By Simplex-Constrained Total Variation. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/8759/PDF icon Technical Report (2.6 MB)
Lellmann, J, Kappes, J H, Yuan, J, Becker, F, Schnörr, C, Mórken, K and Lysaker, M (2009). Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 150-162
Lellmann, J, Kappes, J H, Yuan, J, Becker, F and Schnörr, C (2009). Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 150-162PDF icon Technical Report (1.75 MB)
Lellmann, J, Becker, F and Schnörr, C (2009). Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers. Proceedings of the IEEE Conference on Computer Vision (ICCV 09) Kyoto, Japan. 646-653
Lellmann, J, Becker, F and Schnörr, C (2009). Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers. IEEE International Conference on Computer Vision (ICCV). 646 -- 653PDF icon Technical Report (930.18 KB)
Silvestri, F, Reinelt, G and Schnörr, C (2015). A Convex Relaxation Approach to the Affine Subspace Clustering Problem. Proc.~GCPRPDF icon Technical Report (878.63 KB)
Keuchel, J, Schellewald, C, Cremers, D and Schnörr, C (2001). Convex Relaxations for Binary Image Partitioning and Perceptual Grouping. Mustererkennung 2001. Springer. 2191 353--360
Yuan, J, Schnörr, C, Kohlberger, T and Ruhnau, P (2004). Convex Set-Based Estimation of Image Flows. ICPR 2004 -- 17th Int.~Conf.~on Pattern Recognition. IEEE. 1 124-127
Swoboda, P and Schnörr, C (2013). Convex Variational Image Restoration with Histogram Priors. SIAM J.~Imag.~Sci. 6 1719-1735PDF icon Technical Report (553.54 KB)
Schnörr, (1996). Convex Variational Segmentation of Multi-Channel Images. Proc. 12th Int. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's. Springer-Verlag. 219
Petra, S, Schnörr, C and Schröder, A (2012). Critical Parameter Values and Reconstruction Properties of Discrete Tomography: Application to Experimental Fluid Dynamics. http://arxiv.org/abs/1209.4316
Petra, S, Schnörr, C and Schröder, A (2013). Critical Parameter Values and Reconstruction Propertiesof Discrete Tomography: Application to Experimental FluidDynamics. Fundamenta Informaticae. 125 285--312PDF icon Technical Report (1.42 MB)
D
Becker, F and Schnörr, C (2008). Decomposition of Quadratric Variational Problems. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 325--334PDF icon Technical Report (1.29 MB)
Becker, F and Schnörr, C (2008). Decomposition of Quadratric Variational Problems. Pattern Recognition -- 30th DAGM Symposium. 5096 325--334
Bruhn, A, Jakob, T, Fischer, M, Kohlberger, T, Weickert, J, Brüning, U and Schnörr, C (2002). Designing 3--D Nonlinear Diffusion Filters for High Performance Cluster Computing. Pattern Recognition, Proc.~24th DAGM Symposium. Springer. 2449 290--297
Sprengel, R, Schnörr, C and Neumann, B (1994). Detection of Visual Data Transitions in Nonlinear Parameter Space. Mustererkennung 1994. Technische Universität Wien. 5 315--323
Schnörr, (1991). Determining Optical Flow for Irregular Domains by Minimizing Quadratic Functionals of a Certain Class. IJCV. 6 25--38
Fornland, P and Schnörr, C (1997). Determining the Dominant Plane from Uncalibrated Stereo Vision by a Robust and Convergent Iterative Approach without Correspondence. Proc.~Int.~Conf.~Comp.~Vision and Patt.~Recog.~(CVPR'97)
Cremers, D, Tischhäuser, F, Weickert, J and Schnörr, C (2002). Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford--Shah functional. Int.~J.~Computer Vision. 50 295--313

Pages