Publications

Export 114 results:
Author [ Title(Asc)] Type Year
Filters: Author is Björn Ommer  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
B. Antic and Ommer, B., Robust Multiple-Instance Learning with Superbags, in Proceedings of the Aian Conference on Computer Vision (ACCV) (Oral), 2012, p. 242--255.PDF icon Technical Report (319.58 KB)
K. Roth, Milbich, T., Sinha, S., Gupta, P., Ommer, B., and Cohen, J. Paul, Revisiting Training Strategies and Generalization Performance in Deep Metric Learning, International Conference on Machine Learning (ICML). 2020.
D. Kotovenko, Wright, M., Heimbrecht, A., and Ommer, B., Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
J. C. Rubio and Ommer, B., Regularizing Max-Margin Exemplars by Reconstruction and Generative Models, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, p. 4213--4221.PDF icon Technical Report (2.8 MB)
S. Lang and Ommer, B., Reflecting on How Artworks Are Processed and Analyzed by Computer Vision, European Conference on Computer Vision (ECCV - VISART). Springer, 2018.
A. Monroy, Carque, B., and Ommer, B., Reconstructing the Drawing Process of Reproductions from Medieval Images, in Proceedings of the International Conference on Image Processing, 2011, p. 2974--2977.PDF icon Technical Report (2.43 MB)
S. Lang and Ommer, B., Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods, Arts, Computational Aesthetics, vol. 7, 64, no. 64, 2018.PDF icon arts-07-00064.pdf (4.6 MB)
P. Yarlagadda, Monroy, A., Carque, B., and Ommer, B., Recognition and Analysis of Objects in Medieval Images, in Proceedins of the Aian Conference on Computer Vision, Workshop on e-Heritage, 2010, p. 296--305.PDF icon Technical Report (2.76 MB)
A. Eigenstetter, Takami, M., and Ommer, B., Randomized Max-Margin Compositions for Visual Recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, p. 3590--3597.PDF icon Technical Report (8.01 MB)
P
B. Antic and Ommer, B., Per-Sample Kernel Adaptation for Visual Recognition and Grouping, in Proceedings of the IEEE International Conference on Computer Vision, 2015.PDF icon Technical Report (1.58 MB)
A. Monroy, Kröger, T., Arnold, M., and Ommer, B., Parametric Object Detection for Iconographic Analysis, in Scientific Computing & Cultural Heritage, 2011.
C. S. Garbe and Ommer, B., Parameter Estimation in Image Processing and Computer Vision, in Model Based Parameter Estimation: Theory and Applications, Springer, 2013, p. 311--334.PDF icon Technical Report (928 KB)
T. Milbich, Roth, K., and Ommer, B., PADS: Policy-Adapted Sampling for Visual Similarity Learning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020, vol. 1, no. 1.
L
B. Brattoli, Büchler, U., Wahl, A. - S., Schwab, M. E., and Ommer, B., LSTM Self-Supervision for Detailed Behavior Analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon Article (8.75 MB)
B. Antic, Milbich, T., and Ommer, B., Less is More: Video Trimming for Action Recognition, in Proceedings of the IEEE International Conference on Computer Vision, Workshop on Understanding Human Activities: Context and Interaction, 2013, p. 515--521.PDF icon Technical Report (984.89 KB)
M. Bautista, Fuchs, P., and Ommer, B., Learning Where to Drive by Watching Others, Proceedings of the German Conference Pattern Recognition, vol. 1. Springer-Verlag, Basel, 2017.
B. Ommer, Sauter, M., and M., B. J., Learning Top-Down Grouping of Compositional Hierarchies for Recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Perceptual Organization in Computer Vision, 2006, p. 194--194.PDF icon Technical Report (358.98 KB)
O. Ghori, Mackowiak, R., Bautista, M., Beuter, N., Drumond, L., Diego, F., and Ommer, B., Learning to Forecast Pedestrian Intention from Pose Dynamics, in Intelligent Vehicles, IEEE, 2018, 2018.
B. Ommer and Buhmann, J. M., Learning the Compositional Nature of Visual Objects, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007, p. 1--8.PDF icon Technical Report (2.78 MB)
B. Ommer and Buhmann, J. M., Learning the Compositional Nature of Visual Object Categories for Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, p. 501--516, 2010.PDF icon Technical Report (2.78 MB)

Pages