Publications

Export 224 results:
Author Title [ Type(Desc)] Year
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
Conference Paper
T. Beier, Hamprecht, F. A., and Kappes, J. H., Fusion Moves for Correlation Clustering, in CVPR. Proceedings, 2015, pp. 3507-3516.PDF icon Technical Report (1.19 MB)
U. Köthe, Andres, B., Kröger, T., and Hamprecht, F. A., Geometric Analysis of 3D Electron Microscopy Data, in Proceedings of Workshop on Discrete Geometry and Mathematical Morphology (WADGMM), 2010, pp. 22-26.PDF icon Technical Report (1.43 MB)
B. Andres, Kröger, T., Briggmann, K. L., Denk, W., Norogod, N., Knott, G. W., Köthe, U., and Hamprecht, F. A., Globally Optimal Closed-Surface Segmentation for Connectomics, in ECCV 2012. Proceedings, Part 3, 2012, pp. 778-791.PDF icon Technical Report (2.72 MB)
J. Kleesiek, Biller, A., Urban, G., Köthe, U., Bendszus, M., and Hamprecht, F. A., ilastik for Multi-modal Brain Tumor Segmentation, in MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, 3rdplace, 2014, pp. 12-17.PDF icon Technical Report (405.91 KB)
C. Sommer, Straehle, C. N., Köthe, U., and Hamprecht, F. A., ilastik: Interactive Learning and Segmentation Toolkit, in Eighth IEEE International Symposium on Biomedical Imaging (ISBI 2011).Proceedings, 2011, pp. 230-233.
N. Krasowski, Beier, T., Knott, G. W., Köthe, U., Hamprecht, F. A., and Kreshuk, A., Improving 3D EM Data Segmentation by Joint Optimization over Boundary Evidence and Biological Priors, in 12th {IEEE} International Symposium on Biomedical Imaging, {ISBI} 2015, Brooklyn, NY, USA, April 16-19, 2015, 2015, pp. 536-539.PDF icon Technical Report (2.25 MB)
M. Kandemir and Hamprecht, F. A., Instance Label Prediction by Dirichlet Process Multiple Instance Learning, in UAI. Proceedings, 2014.PDF icon Technical Report (4.26 MB)
C. N. Straehle, Peter, S., Köthe, U., and Hamprecht, F. A., K-smallest Spanning Tree Segmentations, in German Conference on Pattern Recognition (DAGM/GCPR). Proceedings, 2013, pp. 375-384.PDF icon Technical Report (1.18 MB)
B. Andres, Kappes, J. Hendrik, Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-limited Exhaustive Search in Discrete Graphical Models, in ECCV 2012, 2012.
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-limited Exhaustive Search in Discrete Graphical Models, in ECCV 2012, 2012.PDF icon Technical Report (532.64 KB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-Limited Exhaustive Search in Discrete Graphical Models, in Computer Vision - {ECCV} 2012 - 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part {VII}, 2012.PDF icon Technical Report (446.28 KB)
F. Diego and Hamprecht, F. A., Learning Multi-Level Sparse Representation, in NIPS. Proceedings, 2013.PDF icon Technical Report (2.79 MB)
F. Diego and Hamprecht, F. A., Learning Multi-Level Sparse Representation for Identifying Neuronal Activity, in Signal Processing with Adaptive Sparse Structured Representations Workshop (SPARS). Book of Abstracts., 2013.PDF icon Technical Report (1.05 MB)
T. Kröger, Mikula, S., Denk, W., Köthe, U., and Hamprecht, F. A., Learning to Segment Neurons with Non-local Quality Measures, in MICCAI 2013. Proceedings, part II, 2013, vol. 8150, pp. 419-427.PDF icon Technical Report (2.87 MB)
J. Funke, Hamprecht, F. A., and Zhang, C., Learning to Segment: Training Hierarchical Segmentation under a Topological Loss, in MICCAI. Proceedings, Part III, 2015, vol. 9351, pp. 268-275.PDF icon Technical Report (2.92 MB)
B. H. Menze, Kelm, B. Michael, Heck, D., Lichy, M. P., and Hamprecht, F. A., Machine-based rejection of low quality spectra and estimation of brain tumor probabilities from magnetic resonance spectroscopic images, in Bildverarbeitung für die Medizin, 2006, pp. 31-36.PDF icon Technical Report (672.84 KB)
G. Urban, Bendszus, M., Hamprecht, F. A., and Kleesiek, J., Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks, in MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, pp. 31-35.
C. N. Straehle, Kandemir, M., Köthe, U., and Hamprecht, F. A., Multiple instance learning with response-optimized random forests, in ICPR. Proceedings, 2014, pp. 3768 - 3773.PDF icon Technical Report (296.66 KB)
M. Hanselmann, Köthe, U., Renard, B. Y., Kirchner, M., Heeren, R. M. A., and Hamprecht, F. A., Multivariate Watershed Segmentation of Compositional Data, in Proceedings of the 15th International Conference on Discrete Geometry for Computer Imagery (DGCI), in press, 2009, vol. 5810, pp. 180-192.PDF icon Technical Report (1.25 MB)
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 571–587.
F. O. Kaster, Kassemeyer, S., Merkel, B., Nix, O., and Hamprecht, F. A., An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements, in Bildverarbeitung für die Medizin 2010 -- Algorithmen, Systeme, Anwendungen, 2010, pp. 97-101.PDF icon Technical Report (1.12 MB)
B. H. Menze, Kelm, B. Michael, Splitthoff, N., Köthe, U., and Hamprecht, F. A., On oblique random forests, in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2011. Proceedings., 2011, pp. 453-469.PDF icon Technical Report (665.33 KB)
J. Yarkony, Beier, T., Baldi, P., and Hamprecht, F. A., Parallel Multicut Segmentation via Dual Decomposition, in New Frontiers in Mining Complex Patterns - Third International Workshop, {NFMCP} 2014, Held in Conjunction with {ECML-PKDD} 2014, Nancy, France, September 19, 2014, Revised Selected Papers, 2014.
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in Proceedings of ICCV, 2011.
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in Proceedings of ICCV, 2011.PDF icon Technical Report (2.95 MB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in ICCV, Proceedings, 2011, pp. 2611 - 2618.PDF icon Technical Report (8.18 MB)
M. Schiegg, Heuer, B., Haubold, C., Wolf, S., Köthe, U., and Hamprecht, F. A., Proof-reading Guidance in Cell Tracking by Sampling from Tracking-by-assignment Models, in ISBI. Proceedings, 2015, pp. 394-398.PDF icon Technical Report (648.55 KB)
B. Andres, Köthe, U., Bonea, A., Nadler, B., and Hamprecht, F. A., Quantitative Assessment of Image Segmentation Quality by Random Walk Relaxation Times, in Pattern Recognition. 31st DAGM Symposium, Jena, Germany, September 9-11, 2009. Proceedings, 2009, vol. 5748, pp. 502-511.PDF icon Technical Report (3.08 MB)
H. Zhang, Hamprecht, F. A., and Amann, A., Report about VOCs Dataset's Analysis based on Random Forests, in Proceedings of the HPC-Asia05, 2005, pp. 603-607.PDF icon Technical Report (232.13 KB)
C. N. Straehle, Köthe, U., Briggman, K., Denk, W., and Hamprecht, F. A., Seeded watershed cut uncertainty estimators for guided interactive segmentation, in CVPR 2012. Proceedings, 2012, pp. 765 - 772.PDF icon Technical Report (2.84 MB)
B. Andres, Köthe, U., Helmstaedter, M., Denk, W., and Hamprecht, F. A., Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification, in Pattern Recognition. 30th DAGM Symposium Munich, Germany, June 10-13, 2008. Proceedings, 2008, vol. 5096, pp. 142-152.PDF icon Technical Report (1.21 MB)
B. Andres, Garbe, C. S., Schnörr, C., and Jähne, B., Selection of local optical flow models by means of residual analysis, in Proceedings of the 29th DAGM Symposium on Pattern Recognition, 2007, p. 72--81.
B. Andres, Hamprecht, F. A., and Garbe, C. S., Selection of Local Optical Flow Models by Means of Residual Analysis, in Pattern Recognition, 2007, vol. 4713, pp. 72-81.PDF icon Technical Report (229.64 KB)
B. Andres, Hamprecht, F. A., and Garbe, C. S., Selection of Local Optical Flow Models by Means of Residual Analysis, in Pattern Recognition, 2007, vol. 4713, pp. 72-81.PDF icon Technical Report (229.64 KB)
B. Andres, Garbe, C. S., Schnörr, C., and Jähne, B., Selection of local optical flow models by means of residual analysis, in Proceedings of the 29th DAGM Symposium on Pattern Recognition, 2007, p. 72--81.

Pages