Publications

Export 180 results:
Author Title [ Type(Asc)] Year
Filters: Author is Schnörr, C.  [Clear All Filters]
Journal Article
F. Lenzen, Lellmann, J., Becker, F., and Schnörr, C., Solving Quasi-Variational Inequalities for Image Restoration with Adaptive Constraint Sets, SIAM J. Imag. Sci., vol. 7, pp. 2139–2174, 2014.
J. Yuan, Schnörr, C., and Steidl, G., Simultaneous Optical Flow Estimation and Decomposition, SIAM J. Scientific Computing, vol. 29, pp. 2283-2304, 2007.
C. Schnörr, Signal and Image Approximation with Level-Set Constraints, Computing, vol. 81, pp. 137-160, 2007.
E. - M. Didden, Thorarinsdottir, T. L., Lenkoski, A., and Schnörr, C., Shape from Texture using Locally Scaled Point Processes, Image Anal. Stereol., vol. 34, pp. 161-170, 2015.
M. Zisler, Zern, A., Petra, S., and Schnörr, C., Self-Assignment Flows for Unsupervised Data Labeling on Graphs, preprint: arXiv, 2019.
J. Berger, Lenzen, F., Becker, F., Neufeld, A., and Schnörr, C., {Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations, J. Math. Imag. Vision, vol. 58, pp. 102–129, 2017.
J. Lellmann and Schnörr, C., Regularizers for Vector-Valued Data and Labeling Problems in Image Processing, Control Systems and Computers, vol. 2, pp. 43–54, 2011.
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Medical Image Analysis, vol. 18, pp. 781-794, 2014.
S. Weber, Schüle, T., and Schnörr, C., Prior Learning and Convex-Concave Regularization of Binary Tomography, Electr. Notes in Discr. Math., vol. 20, pp. 313-327, 2005.
A. Vlasenko and Schnörr, C., Physically Consistent and Efficient Variational Denoising of Image Fluid Flow Estimates, IEEE Trans. Image Proc., vol. 19, pp. 586-595, 2010.
S. Munder, Schnörr, C., and Gavrila, D. M., Pedestrian Detection and Tracking Using a Mixture of View-Based Shape-Texture Models, IEEE Trans. Intell. Transp. Systems, vol. 9, pp. 333-343, 2008.
J. Weickert and Schnörr, C., PDE–Based Preprocessing of Medical Images, Künstliche Intelligenz, vol. 3, pp. 5–10, 2000.
P. Swoboda, Shekhovtsov, A., Kappes, J. H., Schnörr, C., and Savchynskyy, B., Partial Optimality by Pruning for MAP-Inference with General Graphical Models, IEEE Trans. Patt. Anal. Mach. Intell., vol. 38, pp. 1370–1382, 2016.
W. Peckar, Schnörr, C., Rohr, K., and Stiehl, H. –S., Parameter-Free Elastic Deformation Approach for 2D and 3D Registration Using Prescribed Displacements, J. Math. Imaging and Vision, vol. 10, pp. 143–162, 1999.
P. Ruhnau and Schnörr, C., Optical Stokes Flow Estimation: An Imaging-Based Control Approach, Exp. in Fluids, vol. 42, pp. 61–78, 2007.
C. Schnörr and Sprengel, R., A Nonlinear Regularization Approach to Early Vision, Biol. Cybernetics, vol. 72, pp. 141–149, 1994.
M. Heiler and Schnörr, C., Natural Image Statistics for Natural Image Segmentation, Int. J. Comp. Vision, vol. 63, pp. 5–19, 2005.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Multicuts and Perturb & MAP for Probabilistic Graph Clustering, J. Math. Imag. Vision, vol. 56, pp. 221–237, 2016.
M. Welk, Weickert, J., Becker, F., Schnörr, C., Feddern, C., and Burgeth, B., Median and related local filters for tensor-valued images, Signal Processing, vol. 87, pp. 291-308, 2007.
S. Weber, Schüle, T., Schnörr, C., and Hornegger, J., A Linear Programming Approach to Limited Angle 3D Reconstruction from DSA Projections, Methods of Information in Medicine, vol. 43, pp. 320–326, 2004.
W. Peckar, Schnörr, C., Rohr, K., Stiehl, H. –S., and Spetzger, U., Linear and Incremental Estimation of Elastic Deformations in Medical Registration Using Prescribed Displacements, Machine Graphics & Vision, vol. 7, pp. 807–829, 1998.
M. Heiler and Schnörr, C., Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Programming, J. Mach. Learning Res., vol. 7, pp. 1385–1407, 2006.
R. Hühnerbein, Savarino, F., Petra, S., and Schnörr, C., Learning Adaptive Regularization for Image Labeling Using Geometric Assignment, preprint: arXiv, 2019.
Y. Censor, Gibali, A., Lenzen, F., and Schnörr, C., The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising, J. Comp. Math., vol. 34, pp. 608-623, 2016.
F. Aström, Petra, S., Schmitzer, B., and Schnörr, C., Image Labeling by Assignment, J. Math. Imag. Vision, vol. 58, pp. 211–238, 2017.
R. Hühnerbein, Savarino, F., Aström, F., and Schnörr, C., Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment, SIAM J. Imaging Science, vol. 11, pp. 1317–1362, 2018.
J. Kappes, Speth, M., Reinelt, G., and Schnörr, C., Higher-order Segmentation via Multicuts, Comp. Vision Image Understanding, vol. 143, pp. 104–119, 2016.
J. Heers, Schnörr, C., and Stiehl, H. S., Globally–Convergent Iterative Numerical Schemes for Non–Linear Variational Image Smoothing and Segmentation on a Multi–Processor Machine, IEEE Trans. Image Proc., vol. 10, pp. 852–864, 2001.
L. Kostrykin, Schnörr, C., and Rohr, K., Globally Optimal Segmentation of Cell Nuclei in Fluoroscence Microscopy Images using Shape and Intensity Information, Medical Image Analysis, 2019.
B. Schmitzer and Schnörr, C., Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes, J. Math. Imag. Vision, vol. 52, pp. 436–458, 2015.
A. Zeilmann, Savarino, F., Petra, S., and Schnörr, C., Geometric Numerical Integration of the Assignment Flow, Inverse Problems, vol. 36, p. 034004 (33pp), 2020.
A. Zeilmann, Savarino, F., Petra, S., and Schnörr, C., Geometric Numerical Integration of the Assignment Flow, preprint: arXiv, 2018.
A. Zeilmann, Savarino, F., Petra, S., and Schnörr, C., Geometric Numerical Integration of the Assignment Flow, Inverse Problems, 2019.
F. Aström and Schnörr, C., A Geometric Approach for Color Image Regularization, Comp. Vision Image Understanding, vol. 165, pp. 43–59, 2017.
A. Nicola, Petra, S., Popa, C., and Schnörr, C., A general extending and constraining procedure for linear iterative methods, Int. J. Comp. Math., 2011.

Pages