Publications

Export 1513 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
Erz, M and Jähne, B (2010). Optimierte Kameraauswahl für maschinelles Sehen durch standardisierte Charakterisierung des bildgebenden Systeme. Forum Bildverarbeitung. KIT Scientific Publishing. 155--166. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020266
Lellmann, J, Lenzen, F and Schnörr, C (2010). Optimality Bounds for Variational Relaxations of Optimal Partition Problems
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Energy Min. Meth. Comp. Vis. Patt. Recogn. Springer. 6819 132--146PDF icon Technical Report (1 MB)
Lellmann, J, Lenzen, F and Schnörr, C (2012). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Journal of Mathematical Imaging and Vision. Springer. 47 239-257PDF icon Technical Report (616.16 KB)
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds For A Variational Relaxation Of The Image Partitioning Problem. IPA group, Heidelberg University. http://arxiv.org/abs/1112.0974
Lellmann, J, Lenzen, F and Schnörr, C (2013). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Journal of Mathematical Imaging and Vision. 47 (3) 239-257
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Energy Min. Meth. Comp. Vis. Patt. Recogn. Springer. 132-146
Erz, M and Jähne, B (2012). Optimale und differenzierte Kameraauswahl nach dem EMVA-Standard 1288. Forum Bildverarbeitung. KIT Scientific Publishing. 35--46. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000030440
Scharr, H (2000). Optimale Operatoren in der Digitalen Bildverarbeitung. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/962
Erz, M and Jähne, B (2011). Optimale Kameraauswahl für maschinelles Sehen durch standardisierte Charakterisierung. tm --- Technisches Messen. 78 377--383
Scharr, H (2000). Optimal Separable Interpolation Of Color Images With Bayer Array Format. DFG research unit Image Sequence Analysis to Investigate Dynamic Processes, Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany. http://www.ub.uni-heidelberg.de/archiv/12680/
Jehle, M and Jähne, B (2010). Optimal Lighting for Defect Detection: Illumination Systems, Machine Learning, and Practical Verification. Forum Bildverarbeitung, Regensburg, 02.-03.12.2010. KIT SCientific Publishing. 301-312
Jehle, M and Jähne, B (2010). Optimal lighting for defect detection: illumination systems, machine learning, and practical verification. Forum Bildverarbeitung. KIT Scientific Publishing. 241--252. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020266
Künsch, H R, Agrell, E and Hamprecht, F A (2005). Optimal lattices for sampling. IEEE Transactions on Information Theory. 51 634-647
Atif, M and Jähne, B (2012). Optimal Depth Estimation from a Single Image by Computational Imaging using Chromatic Aberrations. Forum Bildverarbeitung. KIT Scientific Publishing. 23--34. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000030440
Atif, M and Jähne, B (2013). Optimal Depth Estimation from a Single Image by Computational Imaging Using Chromatic Aberrations. tm --- Technisches Messen. 80 343--348
Atif, M (2013). Optimal Depth Estimation and Extended Depth of Field from Single Images by Computational Imaging using Chromatic Aberrations. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/15594
Menze, B H, Lichy, M P, Bachert, P, Kelm, B M, Schlemmer, H P and Hamprecht, F A (2006). Optimal Classification of Long Echo Time in vivo Magnetic Resonance Spectra in the Detection of Recurrent Brain Tumor. NMR in Biomedicine. 19 599-609PDF icon Technical Report (289.77 KB)
Jähne, (2012). Optik, Photonik und Bildverarbeitung --- eine spannende Reise. Optik & Photonik. 7 2--3
Klappstein, J (2008). Optical-Flow based Detection of Moving Objects in Traffic Scenes. IWR, Fakultät für Mathematik und Informatik, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/8591/
Jähne, (1983). Optical water waves measuring techniques. Talk, 1st International Symposium on Gas Transfer at Water Surfaces, Cornell University, Ithaca, New York, June 13--15, 1983
Ruhnau, P and Schnörr, C (2007). Optical Stokes Flow Estimation: An Imaging-Based Control Approach. Exp.~in Fluids. 42 61--78PDF icon Technical Report (1.54 MB)
Friedl, F, Krah, N and Jähne, B (2015). Optical sensing of oxygen using a modified Stern-Volmer equation for high laser irradiance. Sensors and Actuators B: Chemical. 206 336--342
Mischler, W, Rocholz, R and Jähne, B (2009). Optical method for measuring size-distribution and lifetime of bubbles. Poster abstracts SOLAS Open Science Conference, Barcelona, 16--19 Sep. 2009
Jähne, B and Jähne, B (1989). Optical measuring technique for small scale water surface waves. Advanced Optical Instrumentation for Remote Sensing of the Earth's Surface from Space, SPIE Proceeding 1129, International Congress on Optical Science and Engineering, Paris, 24-28 April 1989. 147--152
Klinke, J (1996). Optical Measurements of Small-Scale Wind Generated Water Surface Waves in the Laboratory and the Field. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Mischler, W and Jähne, B (2012). Optical measurements of bubbles and spray in wind/water facilities at high wind speeds. 12th International Triennial Conference on Liquid Atomization and Spray Systems 2012, Heidelberg (ICLASS 2012)
Kiefhaber, D, Rocholz, R, Bauer, P Salomon and Jähne, B (2013). Optical measurement of surface ocean waves. 3rd EOS Topical Meeting on Blue Photonics --- Optics in the Sea
Kiefhaber, D (2014). Optical Measurement of Short Wind Waves --- from the Laboratory to the Field. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/16304
Schmund, D, Schurr, U and Jähne, B (2000). Optical leaf growth analysis. Computer Vision and Applications - A Guide for Students and Practitioners. Academic Press. 640-641
Garbe, C S, Roetmann, K, Beushausen, V and Jähne, B (2008). An optical flow MTV based technique for measuring microfluidic flow in the presence of diffusion and Taylor dispersion. Exp. Fluids. 44 439--450
Garbe, C S, Roetmann, K and Jähne, B (2006). An optical flow based technique for the non-invasive measurement of microfluidic flows. 12th Intern. Symp. on Flow Visualization, Göttingen, 10--14. September 2006
Becker, F, Petra, S and Schnörr, C (2014). Optical Flow. Handbook of Mathematical Methods in Imaging. Springer
Barron, J L, Liptay, A and Spies, H (2000). Optical and range flow to measure 3D plant growth and motion. Image Vision Computing New Zealand. 68--77
Wenig, M, Jähne, B and Platt, U (2005). Operator representation as a new differential optical absorption spectroscopy formalism. Appl. Optics. 44 3246-3253

Pages