Publications

Export 1923 results:
Author Title [ Type(Desc)] Year
Conference Paper
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Partial Optimality via Iterative Pruning for the Potts Model. Scale Space and Variational Methods (SSVM 2013)
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Partial Optimality via Iterative Pruning for the Potts Model. Scale Space and Variational Methods (SSVM 2013)PDF icon Technical Report (159.71 KB)
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Partial Optimality via Iterative Pruning for the Potts Model. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM. 477-488
Hering, F, Merle, M, Wierzimok, D and Jähne, B (1995). Particle tracking in space time sequences. Computer Analysis of Images and Patterns. Springer. 970 294--301
Kräuter, C, Richter, K E, Mesarchaki, E, Rocholz, R, Williams, J and Jähne, B (2012). Partitioning of the Trasfer Resistance between Air and Water. SOLAS Open Science Conference, Washington State, USA
Bleyer, M, Rhemann, C and Rother, C (2011). PatchMatch Stereo - Stereo Matching with Slanted Support Windows. 14.1–14.11
Rhemann, C, Rother, C, Wang, J, Gelautz, M, Kohli, P and Rott, P (2009). A perceptually motivated online benchmark for image matting. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. 2009 IEEE 1826–1833. www.alphamatting.com.
Rhemann, C, Rother, C, Wang, J, Gelautz, M, Kohli, P and Rott, P (2009). A perceptually motivated online benchmark for image matting. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. 2009 IEEE 1826–1833. www.alphamatting.com.
Rhemann, C, Rother, C, Wang, J, Gelautz, M, Kohli, P and Rott, P (2009). A perceptually motivated online benchmark for image matting. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. 2009 IEEE 1826–1833
Kondermann, D, Abraham, S, Förstner, W, Gehrig, S, Imiya, A, Jähne, B, Klose, F, Magor, M, Mayer, H, Mester, R, Pajdla, T, Reulke, R and Zimmer, H (2012). On Performance Analysis of Optical Flow Algorithms. Outdoor and Large-Scale Real-Worls Scene Analysis, Dagstuhl-Workshop 2011. Springer. LNCS 329-355
Jähne, B and Förstner, W (1997). Performance characteristics of low-level motion estimators in spatiotemporal images. DAGM-Workshop Performance Characteristics and Quality of Computer Vision Algorithms, Braunschweig, September 18, 1997. Institute of Photogrammetry, Univ.\ Bonn
Mund, J, Zouhar, A, Meyer, L, Fricke, H and Rother, C (2015). Performance evaluation of LiDAR point clouds towards automated FOD detection on airport aprons. Proceedings of ATACCS 2015 - 5th International Conference on Application and Theory of Automation in Command and Control Systems. 85–94
Mund, J, Zouhar, A, Meyer, L, Fricke, H and Rother, C (2015). Performance evaluation of LiDAR point clouds towards automated FOD detection on airport aprons. Proceedings of ATACCS 2015 - 5th International Conference on Application and Theory of Automation in Command and Control Systems. 85–94
Antic, B and Ommer, B (2015). Per-Sample Kernel Adaptation for Visual Recognition and Grouping. Proceedings of the IEEE International Conference on Computer Vision. IEEEPDF icon Technical Report (1.58 MB)
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Persistency by Pruning for General Graphical Models. submitted to NIPS 2013
Lalonde, J François, Hoiem, D, Efros, A A, Rother, C, Winn, J and Criminisi, A (2007). Photo clip art. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. http://graphics.cs.cmu.edu/projects/photoclipart/
Schmidt, M and Jähne, B (2009). A physical model of Time-of-Flight 3D imaging systems, including suppression of ambient light. 3rd Workshop on Dynamic 3-D Imaging. Springer. 5742 1--15
Vlasenko, A and Schnörr, C (2008). Physically Consistent Variational Denoising of Image Fluid Flow Estimates. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 406--415PDF icon Technical Report (1.6 MB)
Vlasenko, A and Schnörr, C (2008). Physically Consistent Variational Denoising of Image Fluid Flow Estimates. Pattern Recognition – 30th DAGM Symposium. Springer Verlag. 5096 406–415
Haußecker, H, Schimpf, U, Garbe, C S and Jähne, B (2002). Physics from IR image sequences: Quantitative analysis of transport models and parameters of air-sea gas transfer. Gas Transfer at Water Surfaces. American Geophysical Union. 127 103--108
Meine, H, Köthe, U and Stelldinger, P (2009). Pixel Approximation Errors in Common Watershed Algorithms. Discrete Geometry for Computer Imagery. Springer. 5810 193-202PDF icon Technical Report (6.5 MB)
Meine, H, Köthe, U and Stelldinger, P (2009). Pixel Approximation Errors in Common Watershed Algorithms. Discrete Geometry for Computer Imagery. Springer. 5810 193-202
Jähne, (2012). Plenoptic image acquisition and processing. Proc.\ Int. Symp. Microoptical Imaging and Projection (MIPS2012). 87--89
Michel, F, Krull, A, Brachmann, E, Yang, M Ying, Gumhold, S and Rother, C (2015). Pose Estimation of Kinematic Chain Instances via Object Coordinate Regression. 181.1–181.11
Krull, A, Brachmann, E, Nowozin, S, Michel, F, Shotton, J and Rother, C (2017). PoseAgent: Budget-constrained 6D object pose estimation via reinforcement learning. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 2566–2574. http://arxiv.org/abs/1612.03779
Kondermann, C, Kondermann, D and Garbe, C S (2008). Postprocessing of optical flows via surface measures and motion inpainting. Pattern Recognition. 5096 355--364
Detert, M, Jirka, G H, Jehle, M, Klar, M, Jähne, B, Köhler, H - J and Wenka, T (2004). Pressure fluctuations within subsurface gravel bed caused by turbulent open-channel flow. Proc. of River Flow 2004. A. A. Balkema Publishers. 695-701
Kappes, J H, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts. Proc.~SSVM. SpringerPDF icon Technical Report (1.1 MB)
Kappes, J Hendrik, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic correlation clustering and image partitioning using perturbed Multicuts. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9087 231–242
Kappes, J, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts. Proc. SSVM. Springer
Andres, B, Kappes, J H, Beier, T, Köthe, U and Hamprecht, F A (2011). Probabilistic Image Segmentation with Closedness Constraints. Proceedings of ICCV
Andres, B, Kappes, J H, Beier, T, Köthe, U and Hamprecht, F A (2011). Probabilistic Image Segmentation with Closedness Constraints. Proceedings of ICCVPDF icon Technical Report (2.95 MB)
Andres, B, Kappes, J H, Beier, T, Köthe, U and Hamprecht, F A (2011). Probabilistic Image Segmentation with Closedness Constraints. ICCV, Proceedings. 2611 - 2618PDF icon Technical Report (8.18 MB)
Schellewald, C and Schnörr, C (2005). Probabilistic Subgraph Matching Based on Convex Relaxation. Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05). Springer. 3757 171-186
E Sanmartin, F, Damrich, S and Hamprecht, F A (2019). Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning. Advances in Neural Information Processing Systems

Pages