Publications

Export 223 results:
Author Title [ Type(Desc)] Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
Conference Paper
J. Lellmann, Lenzen, F., and Schnörr, C., Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem, in Energy Min. Meth. Comp. Vis. Patt. Recogn., 2011, vol. 6819, p. 132--146.PDF icon Technical Report (1 MB)
J. Lellmann, Lenzen, F., and Schnörr, C., Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem, in Energy Min. Meth. Comp. Vis. Patt. Recogn., 2011, pp. 132-146.
J. Lellmann, Lenzen, F., and Schnörr, C., Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem, in Energy Min. Meth. Comp. Vis. Patt. Recogn., 2011, vol. 6819, pp. 132–146.
F. Rathke, Schmidt, S., and Schnörr, C., Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography, in MICCAI, 2011, vol. 6893, p. 370--377.PDF icon Technical Report (1.12 MB)
F. Rathke, Schmidt, S., and Schnörr, C., Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography, in MICCAI 2011, Proceedings, 2011, vol. 6893, pp. 370-377.
F. Rathke, Schmidt, S., and Schnörr, C., Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography, in MICCAI, 2011, vol. 6893, pp. 370–377.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General Graphical Models, in IEEE Conference on Computer Vision and Pattern Recognition 2014, 2014.PDF icon Technical Report (703.34 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General Graphical Models, in IEEE Conference on Computer Vision and Pattern Recognition 2014, 2014.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.PDF icon Technical Report (159.71 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM, 2013, pp. 477-488.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Persistency by Pruning for General Graphical Models, in submitted to NIPS 2013., 2013.
A. Vlasenko and Schnörr, C., Physically Consistent Variational Denoising of Image Fluid Flow Estimates, in Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 406--415.PDF icon Technical Report (1.6 MB)
J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Probabilistic correlation clustering and image partitioning using perturbed Multicuts, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9087, pp. 231–242.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts, in Proc.~SSVM, 2015.PDF icon Technical Report (1.1 MB)
A. Bruhn, Weickert, J., Feddern, C., Kohlberger, T., and Schnörr, C., Real-Time Optic Flow Computation with Variational Methods, in Proc. Computer Analysis of Images and Patterns (CAIP'03), 2003, vol. 2756, pp. 222-229.
J. Berger, Neufeld, A., Becker, F., Lenzen, F., and Schnörr, C., Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations, in Scale Space and Variational Methods in Computer Vision (SSVM 2015), 2015.PDF icon Technical Report (364.01 KB)
J. Berger, Neufeld, A., Becker, F., Lenzen, F., and Schnörr, C., Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations, in Scale Space and Variational Methods in Computer Vision (SSVM 2015), 2015.
B. Andres, Garbe, C. S., Schnörr, C., and Jähne, B., Selection of local optical flow models by means of residual analysis, in Proceedings of the 29th DAGM Symposium on Pattern Recognition, 2007, p. 72--81.
B. Andres, Hamprecht, F. A., and Garbe, C. S., Selection of Local Optical Flow Models by Means of Residual Analysis, in Pattern Recognition, 2007, vol. 4713, pp. 72-81.PDF icon Technical Report (229.64 KB)
L. Görlitz, Menze, B. H., Weber, M. - A., and Kelm, B. Michael, Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields, in Pattern Recognition, 2007, vol. 4713, pp. 224-233.PDF icon Technical Report (872.46 KB)
S. Petra, Schröder, A., Wieneke, B., and Schnörr, C., On Sparsity Maximization in Tomographic Particle Image Reconstruction, in Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 294--303.PDF icon Technical Report (1014.71 KB)
F. Lauer and Schnörr, C., Spectral Clustering of Linear Subspaces for Motion Segmentation, in Proc.~IEEE Int.~Conf.~Computer Vision (ICCV'09), 2009.PDF icon Technical Report (1.12 MB)
F. Lauer and Schnörr, C., Spectral Clustering of Linear Subspaces for Motion Segmentation, in Proceedings of the IEEE Conference on Computer Vision (ICCV 09) Kyoto, Japan, in press, 2009, pp. 678-685.
S. Schmidt, Kappes, J. H., Bergtholdt, M., Pekar, V., Dries, S., Bystrov, D., and Schnörr, C., Spine Detection and Labeling Using a Parts-Based Graphical Model, in Proc. 20th International Conference on Information Processing in Medical Imaging (IPMI 2007), 2007, vol. 4584, pp. 122-133.PDF icon Technical Report (1.46 MB)
B. Savchynskyy, Kappes, J. H., Schmidt, S., and Schnörr, C., A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling, in IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2011.PDF icon Technical Report (408.99 KB)
J. Yuan, Schnörr, C., Steidl, G., and Becker, F., A Study of Non-Smooth Convex Flow Decomposition, in Proc. Variational, Geometric and Level Set Methods in Computer Vision, 2005, vol. 3752, pp. 1–12.
J. H. Kappes, Petra, S., Schnörr, C., and Zisler, M., TomoGC: Binary Tomography by Constrained Graph Cuts, in Proc.~GCPR, 2015.PDF icon Technical Report (2.46 MB)
J. Yuan, Schnörr, C., and Steidl, G., Total-Variation Based Piecewise Affine Regularization, in Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 552-564.PDF icon Technical Report (478.04 KB)
J. Yuan, Schnörr, C., and Steidl, G., Total-Variation Based Piecewise Affine Regularization, in Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 552-564.
J. H. Kappes, Speth, M., Reinelt, G., and Schnörr, C., Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization, in CVPR, 2013.
J. H. Kappes, Speth, M., Reinelt, G., and Schnörr, C., Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization, in CVPR, 2013.PDF icon Technical Report (623.84 KB)
D. Cremers, Sochen, N., and Schnörr, C., Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling, in Scale Space Methods in Computer Vision, 2003, vol. 2695, p. 388--400.PDF icon Technical Report (451.82 KB)
D. Cremers, Sochen, N., and Schnörr, C., Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling, in Scale Space Methods in Computer Vision, 2003, vol. 2695, pp. 388–400.
F. Becker, Wieneke, B., Yuan, J., and Schnörr, C., A Variational Approach to Adaptive Correlation for Motion Estimation in Particle Image Velocimetry, in Pattern Recognition – 30th DAGM Symposium, 2008, vol. 5096, pp. 335–344.

Pages