Publications

Export 114 results:
Author [ Title(Desc)] Type Year
Filters: Author is Björn Ommer  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
A. Eigenstetter, Takami, M., and Ommer, B., Randomized Max-Margin Compositions for Visual Recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, p. 3590--3597.PDF icon Technical Report (8.01 MB)
P. Yarlagadda, Monroy, A., Carque, B., and Ommer, B., Recognition and Analysis of Objects in Medieval Images, in Proceedins of the Aian Conference on Computer Vision, Workshop on e-Heritage, 2010, p. 296--305.PDF icon Technical Report (2.76 MB)
S. Lang and Ommer, B., Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods, Arts, Computational Aesthetics, vol. 7, 64, no. 64, 2018.PDF icon arts-07-00064.pdf (4.6 MB)
A. Monroy, Carque, B., and Ommer, B., Reconstructing the Drawing Process of Reproductions from Medieval Images, in Proceedings of the International Conference on Image Processing, 2011, p. 2974--2977.PDF icon Technical Report (2.43 MB)
S. Lang and Ommer, B., Reflecting on How Artworks Are Processed and Analyzed by Computer Vision, European Conference on Computer Vision (ECCV - VISART). Springer, 2018.
J. C. Rubio and Ommer, B., Regularizing Max-Margin Exemplars by Reconstruction and Generative Models, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, p. 4213--4221.PDF icon Technical Report (2.8 MB)
D. Kotovenko, Wright, M., Heimbrecht, A., and Ommer, B., Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
K. Roth, Milbich, T., Sinha, S., Gupta, P., Ommer, B., and Cohen, J. Paul, Revisiting Training Strategies and Generalization Performance in Deep Metric Learning, International Conference on Machine Learning (ICML). 2020.
B. Antic and Ommer, B., Robust Multiple-Instance Learning with Superbags, in Proceedings of the Aian Conference on Computer Vision (ACCV) (Oral), 2012, p. 242--255.PDF icon Technical Report (319.58 KB)
B. Ommer, The Role of Shape in Visual Recognition, in Shape Perception in Human Computer Vision: An Interdisciplinary Perspective, Springer, 2013, p. 373--385.PDF icon Technical Report (8.18 MB)
S
K. Roth, Milbich, T., Ommer, B., Cohen, J. Paul, and Ghassemi, M., S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning, Proceedings of International Conference on Machine Learning (ICML). 2021.
B. Ommer, Mader, T., and Buhmann, J. M., Seeing the Objects Behind the Dots: Recognition in Videos from a Moving Camera, International Journal of Computer Vision, vol. 83, p. 57--71, 2009.PDF icon Technical Report (9.61 MB)
B. Ommer, Seeing the Objects Behind the Parts: Learning Compositional Models for Visual Recognition. VDM Verlag, 2008.
Ö. Sümer, Dencker, T., and Ommer, B., Self-supervised Learning of Pose Embeddings from Spatiotemporal Relations in Videos, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.PDF icon Paper (3.98 MB)PDF icon Supplementary Material (3.36 MB)
M. Amirul Islam, Kowal, M., Esser, P., Jia, S., Ommer, B., Derpanis, K. G., and Bruce, N., Shape or Texture: Understanding Discriminative Features in CNNs, International Conference on Learning Representations (ICLR). 2021.
A. Monroy, Bell, P., and Ommer, B., Shaping Art with Art: Morphological Analysis for Investigating Artistic Reproductions, in Proceedings of the European Conference on Computer Vision, Workshop on VISART, 2012, vol. 7583, p. 571--580.PDF icon Technical Report (7 MB)
T. Milbich, Roth, K., Brattoli, B., and Ommer, B., Sharing Matters for Generalization in Deep Metric Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
B. Antic, Büchler, U., Wahl, A. - S., Schwab, M. E., and Ommer, B., Spatiotemporal Parsing of Motor Kinematics for Assessing Stroke Recovery, in Medical Image Computing and Computer-Assisted Intervention, 2015.PDF icon Article (2.24 MB)
B. Antic and Ommer, B., Spatio-temporal Video Parsing for Abnormality Detection, arXiv, vol. abs/1502.06235, 2015.PDF icon Technical Report (4.61 MB)
M. Dorkenwald, Milbich, T., Blattmann, A., Rombach, R., Derpanis, K. G., and Ommer, B., Stochastic Image-to-Video Synthesis usin cINNs, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
A. Sanakoyeu, Kotovenko, D., Lang, S., and Ommer, B., A Style-Aware Content Loss for Real-time HD Style Transfer, in Proceedings of the European Conference on Computer Vision (ECCV) (Oral), 2018.
T
P. Esser, Rombach, R., and Ommer, B., Taming Transformers for High-Resolution Image Synthesis, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
P. Yarlagadda, Monroy, A., Carque, B., and Ommer, B., Top-down Analysis of Low-level Object Relatedness Leading to Semantic Understanding of Medieval Image Collections, in Conference on Computer Vision and Image Analysis of Art II, 2011, vol. 7869, p. 61--69.PDF icon Technical Report (11.06 MB)
P. Yarlagadda, Monroy, A., Carque, B., and Ommer, B., Towards a Computer-based Understanding of Medieval Images, in Scientific Computing & Cultural Heritage, Springer, 2013, p. 89--97.
P. Yarlagadda, Monroy, A., Carque, B., and Ommer, B., Towards a Computer-based Understanding of Medieval Images, in Scientific Computing & Cultural Heritage, 2009, p. 89--97.
P. Esser, Haux, J., Milbich, T., and Ommer, B., Towards Learning a Realistic Rendering of Human Behavior, in European Conference on Computer Vision (ECCV - HBUGEN), 2018.
P. Bell and Ommer, B., Training Argus, Kunstchronik. Monatsschrift für Kunstwissenschaft, Museumswesen und Denkmalpflege, vol. 68, p. 414--420, 2015.
S. Lang and Ommer, B., Transforming Information Into Knowledge: How Computational Methods Reshape Art History, Digital Humanities Quaterly (DHQ), vol. 15, no. 3, 2021.
S. Lang and Ommer, B., Transforming Information Into Knowledge: How Computational Methods Reshape Art History, Digital Humanities Quaterly (DHQ), vol. 15, no. 3, 2021.
U
A. Blattmann, Milbich, T., Dorkenwald, M., and Ommer, B., Understanding Object Dynamics for Interactive Image-to-Video Synthesis, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
B. Brattoli, Büchler, U., Dorkenwald, M., Reiser, P., Filli, L., Helmchen, F., Wahl, A. - S., and Ommer, B., Unsupervised behaviour analysis and magnification (uBAM) using deep learning, Nature Machine Intelligence, 2021.
M. Dorkenwald, Büchler, U., and Ommer, B., Unsupervised Magnification of Posture Deviations Across Subjects, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020.PDF icon article.pdf (1.15 MB)
S. Braun, Esser, P., and Ommer, B., Unsupervised Part Discovery by Unsupervised Disentanglement, Proceedings of the German Conference on Pattern Recognition (GCPR) (Oral). Tübingen, 2020.
D. Lorenz, Bereska, L., Milbich, T., and Ommer, B., Unsupervised Part-Based Disentangling of Object Shape and Appearance, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Oral + Best paper finalist: top 45 / 5160 submissions), 2019.
T. Milbich, Ghori, O., and Ommer, B., Unsupervised Representation Learning by Discovering Reliable Image Relations, Pattern Recognition, vol. 102, 2020.

Pages