Publications

Export 1514 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer. 6313 735--747
Kappes, J H and Schnörr, C (2008). MAP-Inference for Highly-Connected Graphs with DC-Programming. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 1--10PDF icon Technical Report (1.91 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem. CVPRPDF icon Technical Report (1.35 MB)
Kappes, J H, Savchynskyy, B and Schnörr, C (2012). A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation. CVPR. Proceedings. 1688-1695
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer Berlin / Heidelberg. 6313 735--747PDF icon Technical Report (1.49 MB)
Kappes, J H, Beier, T and Schnörr, C (2014). MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves. Computer Vision - {ECCV} 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part {II}. http://dx.doi.org/10.1007/978-3-319-16181-5_37PDF icon Technical Report (557.49 KB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. abs/1404.0533. http://hci.iwr.uni-heidelberg.de/opengm2/PDF icon Technical Report (3.32 MB)
Karim, R, Bergtholdt, M, Kappes, J H and Schnörr, C (2007). Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification. Pattern Recognition -- 29th DAGM Symposium. Springer. 4713 395-404PDF icon Technical Report (491.56 KB)
Kassemeyer, S (2009). Quantification Of Tumour Angiogenesis Using Pattern Recognition. University of Heidelberg
Kaster, F O, Kassemeyer, S, Merkel, B, Nix, O and Hamprecht, F A (2010). An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements. Bildverarbeitung für die Medizin 2010 -- Algorithmen, Systeme, Anwendungen. Springer. 97-101PDF icon Technical Report (1.12 MB)
Kaster, F, Weber, M - A and Hamprecht, F A (2011). Comparative Validation of Graphical Models for Learning Tumor Segmentations from Noisy Manual Annotations. LNCS. Springer, Heidelberg. LNCS 6533 74-85PDF icon Technical Report (544.56 KB)
Kaster, F O, Kelm, B M, Zechmann, C M, Weber, M - A, Hamprecht, F A and Nix, O (2009). Classification of Spectroscopic Images in the DIROlab Environment. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. Springer. 25/V 252--255PDF icon Technical Report (145.73 KB)
Kaster, F (2011). Image Analysis for the Life Sciences - Computer-assisted Tumor Diagnostics and Digital Embryomics. University of Heidelberg
Kaster, F O, Merkel, B, Nix, O and Hamprecht, F A (2011). An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements. Computer Science - Research and Development. 26 65-85PDF icon Technical Report (808.16 KB)
Kauppi, J P, Kandemir, M, Saarinen, V M, Hirvenkari, L, Parkkonen, L, Klami, A, Hari, R and Kaski, S (2015). Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals. NeuroImage. 112 288-298PDF icon Technical Report (2.39 MB)
Kausler, B (2010). Modeling Of Spectral Peaks For Mass-Spectrometry-Based Proteomics. Universities of Karlsruhe and Heidelberg
Kausler, B (2013). Tracking-by-Assignment as a Probabilistic Graphical Model with Applications in Developmental Biology. University of Heidelberg
Kausler, B X, Schiegg, M, Andres, B, Lindner, M, Köthe, U, Leitte, H, Wittbrodt, J, Hufnagel, L and Hamprecht, F A (2012). A Discrete Chain Graph Model for 3d+t Cell Tracking with High Misdetection Robustness. ECCV 2012. Proceedings. 7574 144-157PDF icon Technical Report (809.07 KB)
Kawetzki, D (2018). Semantic Segmentation Of Urban Scenes Using Deep Learning. Heidelberg University
Kelm, B M, Menze, B H and Hamprecht, F A (2005). Automatische Lokalisation von Tumoren in 1H-NMR-spektroskopischen in vivo Aufnahmen. VDI-Berichte. 1883 457-466PDF icon Technical Report (221.54 KB)
Kelm, B M, Pal, C and McCallum, A (2006). Combining Generative and Discriminative Methods for Pixel Classification with Multi-Conditional Learning.. ICPR 2006. 2 828-832PDF icon Technical Report (114.99 KB)
Kelm, B M, Müller, N, Menze, B H and Hamprecht, F A (2006). Bayesian Estimation of Smooth Parameter Maps for Dynamic Contrast-Enhanced MR Images with Block-ICM. Proc Computer Vision and Pattern Recognition Workshop (Mathematical Methods in Biomedical Image Analysis). IEEE Computer Society. 96-103PDF icon Technical Report (232.69 KB)
Kelm, B M, Menze, B H, Zechmann, C M, Baudendistel, K T and Hamprecht, F A (2007). Automated Estimation of Tumor Probability in Prostate MRSI: Pattern Recognition vs. Quantification. Magnetic Resonance in Medicine. 57 150-159PDF icon Technical Report (348.05 KB)
Kelm, B M, Kaster, F, Henning, A, Weber, M - A, Bachert, P, Bösinger, P, Hamprecht, F A and Menze, B H (2011). Using Spatial Prior Knowledge in the Spectral Fitting of Magnetic Resonance Spectroscopic Images. NMR in Biomedicine. 25(1) 1-13PDF icon Technical Report (1.94 MB)
Kelm, B M, Menze, B H, Nix, O, Zechmann, C and Hamprecht, F A (2009). Estimating Kinetic Parameter Maps from Dynamic Contrast-Enhanced MRI using Spatial Prior Knowledge. IEEE Transaction on Medical Imaging. 28:10 1534-1547PDF icon Technical Report (419.8 KB)
Kelm, B M (2007). Evaluation of Vector-Valued Clinical Image Data Using Probabilistic Graphical Models: Quantification and Pattern Recognition. University of HeidelbergPDF icon Technical Report (4.89 MB)
Kelm, B M, Menze, B H, Neff, T, Zechmann, C M and Hamprecht, F A (2006). CLARET: a tool for fully automated evaluation of MRSI with pattern recognition methods.. Bildverarbeitung für die Medizin 2006 - Algorithmen, Systeme, Anwendungen. Springer. 51-55. http://www.efmi-wg-mip.net/service/bvm2006PDF icon Technical Report (275.25 KB)
Keränen, S V E, DePace, A, Hendriks, C L Luengo, Fowlkes, C, Arbelaez, P, Ommer, B, Brox, T, Henriquez, C, Wunderlich, Z, Eckenrode, K, Fischer, B, Hammonds, A and Celniker, S E (2009). Computational Analysis of Quantitative Changes in Gene Expression and Embryo Morphology between Species. Evolution-The Molecular Landscape
Keuchel, J, Schnörr, C, Schellewald, C and Cremers, D (2002). Unsupervised Image Partitioning with Semidefinite Programming. Pattern Recognition, Proc.~24th DAGM Symposium. Springer. 2449 141--149
Keuchel, J, Schellewald, C, Cremers, D and Schnörr, C (2001). Convex Relaxations for Binary Image Partitioning and Perceptual Grouping. Mustererkennung 2001. Springer. 2191 353--360
Keuchel, J, Naumann, S, Heiler, M and Siegmund, A (2002). Automatic Land Cover Analysis for Tenerife by Supervised Classification using Remotely Sensed Data. Remote Sensing of Environment
Keuchel, J, Heiler, M and Schnörr, C (2004). Hierarchical Image Segmentation based on Semidefinite Programming. Pattern Recognition, Proc.~26th DAGM Symposium. Springer. 3175 120-128
Keuchel, J, Schnörr, C, Schellewald, C and Cremers, D (2003). Binary Partitioning, Perceptual Grouping, and Restoration with Semidefinite Programming. PAMI. 25 1364--1379
Kiechle, M, Storath, M, Weinmann, A and Kleinsteuber, M (2018). Model-based learning of local image features for unsupervised texture segmentation. IEEE Transactions on Image Processing. 27 1994-2007
Kiefer, L, Storath, M and Weinmann, A (2019). An efficient algorithm for the piecewise affine-linear Mumford-Shah model based on a Taylor jet splitting. IEEE Transactions on Image Processing. 29PDF icon Technical Report (2.04 MB)

Pages