Publications

Export 1943 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Kröger, T, Mikula, S, Denk, W, Köthe, U and Hamprecht, F A (2013). Learning to Segment Neurons with Non-local Quality Measures. MICCAI 2013. Proceedings, part II. Springer. 8150 419-427PDF icon Technical Report (2.87 MB)
Lou, X and Hamprecht, F A (2012). Learning to Segment Dense Cell Nuclei with Shape Prior. CVPR 2012. Proceedings. 1012-1018PDF icon Technical Report (2.66 MB)
Kruse, J, Rother, C, Schmidt, U and Dresden, T U (2017). Learning To Push The Limits Of Efficient Fft-Based Image Deconvolution - Supplemental Material
Kruse, J, Rother, C and Schmidt, U (2017). Learning to Push the Limits of Efficient FFT-Based Image Deconvolution. Proceedings of the IEEE International Conference on Computer Vision. 2017-Octob 4596–4604
Ghori, O, Mackowiak, R, Bautista, M, Beuter, N, Drumond, L, Diego, F and Ommer, B (2018). Learning to Forecast Pedestrian Intention from Pose Dynamics. Intelligent Vehicles, IEEE, 2018
Fiaschi, L, Nair, R, Köthe, U and Hamprecht, F A (2012). Learning to Count with Regression Forest and Structured Labels. ICPR 2012. Proceedings. 2685-2688PDF icon Technical Report (3.66 MB)
von Borstel, M (2016). Learning To Count From Weak Supervision. University of Heidelberg
Ommer, B and Buhmann, J M (2007). Learning the Compositional Nature of Visual Objects. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 1--8PDF icon Technical Report (2.78 MB)
Ommer, B and Buhmann, J M (2010). Learning the Compositional Nature of Visual Object Categories for Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 32 501--516PDF icon Technical Report (2.78 MB)
Weiler, M (2017). Learning Steerable Filters For Rotation Equivariant Convolutional Neural Networks. Heidelberg University
Weiler, M, Hamprecht, F A and Storath, M (2018). Learning Steerable Filters for Rotation Equivariant CNNs. CVPR
Heiler, M and Schnörr, C (2006). Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Programming. J. Mach. Learning Res. 7 1385–1407. http://www.cvgpr.uni-mannheim.de/Publications
Heiler, M and Schnörr, C (2005). Learning Sparse Image Codes by Convex Programming. Proc. Tenth IEEE Int. Conf. Computer Vision (ICCV'05). Beijing, China. 1667-1674
Haußmann, M, Gerwinn, S, Look, A, Rakitsch, B and Kandemir, M (2021). Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes. International Conference on Artificial Intelligence and Statistics . PMLR 130 478-486
Jehle, M, Sommer, C and Jähne, B (2010). Learning of Optimal Illumination for Material Classification. Proceedings of the 32nd DAGM Symposium on Pattern Recognition, Darmstadt, Germany. Springer. 563-572
Jehle, M, Sommer, C and Jähne, B (2010). Learning of optimal illumination for material classification. Pattern Recognition. Springer. 6376 563--572
Bergtholdt, M, Kappes, J H and Schnörr, C (2006). Learning of Graphical Models and Efficient Inference for Object Class Recognition. Proc. DAGM 2006. Springer. 375-388 375-388
Afifi, M, Derpanis, K G, Ommer, B and Brown, M S (2021). Learning Multi-Scale Photo Exposure Correction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2003.11596
Diego, F and Hamprecht, F A (2013). Learning Multi-Level Sparse Representation for Identifying Neuronal Activity. Signal Processing with Adaptive Sparse Structured Representations Workshop (SPARS). Book of AbstractsPDF icon Technical Report (1.05 MB)
Diego, F and Hamprecht, F A (2013). Learning Multi-Level Sparse Representation. NIPS. Proceedings. http://papers.nips.cc/paper/5076-learning-multi-level-sparse-representationsPDF icon Technical Report (2.79 MB)
Brachmann, E and Rother, C (2018). Learning Less is More - 6D Camera Localization via 3D Surface Regression. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 4654–4662. http://arxiv.org/abs/1711.10228
Antic, B and Ommer, B (2014). Learning Latent Constituents for Recognition of Group Activities in Video. Proceedings of the European Conference on Computer Vision (ECCV) (Oral). Springer. 33--47PDF icon Technical Report (4.54 MB)
Schiegg, M, Diego, F and Hamprecht, F A (2016). Learning Diverse Models: The Coulomb Structured Support Vector Machine. ECCV. Proceedings. Springer. LNCS 9907 585-599PDF icon Technical Report (2.54 MB)
Hoai, M, Torresani, L, De La Torre, F and Rother, C (2014). Learning discriminative localization from weakly labeled data. Pattern Recognition. 47 1523–1534
Yarlagadda, P, Eigenstetter, A and Ommer, B (2012). Learning Discriminative Chamfer Regularization. BMVC. Springer. 1--11. http://www.bmva.org/bmvc/2012/BMVC/paper020/paper020.pdf
Jancsary, J, Nowozin, S and Rother, C (2013). Learning convex QP relaxations for structured prediction. 30th International Conference on Machine Learning, ICML 2013. 1952–1960
Ommer, B and Buhmann, J M (2006). Learning Compositional Categorization Models. Proceedings of the European Conference on Computer Vision. Springer. 3953 316--329PDF icon Technical Report (1.35 MB)
Fiaschi, L (2013). Learning Based Biological Image Analysis. University of Heidelberg
Krull, A, Brachmann, E, Michel, F, Yang, M Ying, Gumhold, S and Rother, C (2015). Learning analysis-by-synthesis for 6d pose estimation in RGB-D images. Proceedings of the IEEE International Conference on Computer Vision. 2015 Inter 954–962
Nickisch, H, Rother, C, Kohli, P and Rhemann, C (2010). Learning an Interactive Segmentation System - Supplemental Material
Withopf, D and Jähne, B (2006). Learning algorithm for real-time vehicle tracking. Proc. IEEE Intelligent Transportation Systems Conference ITSC '06. 516--521
Hühnerbein, R, Savarino, F, Petra, S and Schnörr, C (2019). Learning Adaptive Regularization for Image Labeling Using Geometric Assignment. preprint: arXiv. https://arxiv.org/abs/1910.09976
Hühnerbein, R, Savarino, F, Petra, S and Schnörr, C (2019). Learning Adaptive Regularization for Image Labeling Using Geometric Assignment. Proc. SSVM. Springer
Wolf, S, Schott, L, Köthe, U and Hamprecht, F A (2017). Learned Watershed: End-to-End Learning of Seeded Segmentation. ICCV. 2030-2038PDF icon Technical Report (3.76 MB)
Schott, L (2017). Learned Watershed Algorithm: End-To-End Learning Of Seeded Segmentation. Heidelberg University

Pages