Publications

Export 1906 results:
Author Title [ Type(Desc)] Year
Journal Article
Gianniotis, N, Schnörr, C, Molkenthin, C and Bora, S S (2015). Approximate variational inference based on a finite sample of Gaussian latent variables. Patt.~Anal.~ApplPDF icon Technical Report (1.4 MB)
Horn, M (2014). Arriving at Z / f. 1–2
Krull, A, Hirsch, P, Rother, C, Schiffrin, A and Krull, C (2020). Artificial-intelligence-driven scanning probe microscopy. Communications Physics. 3
Zern, A, Zeilmann, A and Schnörr, C (2020). Assignment Flows for Data Labeling on Graphs: Convergence and Stability. preprint: arXiv. https://arxiv.org/abs/2002.11571
Wahl, A - S, Omlor, W, Rubio, J C, Chen, J L, Zheng, H, Schröter, A, Gullo, M, Weinmann, O, Kobayashi, K, Helmchen, F, Ommer, B and Schwab, M E (2014). Asynchronous Therapy Restores Motor Control by Rewiring of the Rat Corticospinal Tract after Stroke. Science. American Association for The Advancement of Science. 344 1250--1255. http://www.sciencemag.org/content/344/6189/1250
Lang, S and Ommer, B (2018). Attesting Similarity: Supporting the Organization and Study of Art Image Collections with Computer Vision. Digital Scholarship in the Humanities, Oxford University Press. 33 845-856
Abu Alhaija, H, Mustikovela, S Karthik, Mescheder, L, Geiger, A and Rother, C (2018). Augmented Reality Meets Computer Vision. International Journal of Computer Vision. In press 1–13
Abu Alhaija, H, Mustikovela, S K, Mescheder, A, Geiger, C and Rother, C (2018). Augmented Reality Meets Computer Vision Efficient Data Generation for Urban Driving Scenes. IJCV. 1-12PDF icon Technical Report (3.83 MB)
Abu Alhaija, H, Mustikovela, S Karthik, Mescheder, L, Geiger, A and Rother, C (2018). Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes. International Journal of Computer Vision. 126 961–972. http://arxiv.org/abs/1708.01566
(2006). Autocollage
Kreshuk, A, Stankiewicz, M, Lou, X, Kirchner, M, Hamprecht, F A and Mayer, M P (2010). Automated detection and analysis of bimodal isotope peak distribution in H/D exchange mass spectrometry using HeXicon. International Journal of Mass Spectrometry. 302 125-131PDF icon Technical Report (3.22 MB)
Kreshuk, A, Straehle, C N, Sommer, C, Köthe, U, Cantoni, M, Knott, G W and Hamprecht, F A (2011). Automated Detection and Segmentation of Synaptic Contacts in Nearly Isotropic Serial Electron Microscopy Images. PLoS ONE. 6 (10)PDF icon Technical Report (290.48 KB)
Kreshuk, A, Köthe, U, Pax, E, Bock, D D and Hamprecht, F A (2014). Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks. PLoS ONE. 9 2PDF icon Technical Report (16.66 MB)
Kelm, B Michael, Menze, B H, Zechmann, C M, Baudendistel, K T and Hamprecht, F A (2007). Automated Estimation of Tumor Probability in Prostate MRSI: Pattern Recognition vs. Quantification. Magnetic Resonance in Medicine. 57 150-159PDF icon Technical Report (348.05 KB)
Diego, F, Reichinnek, S, Both, M and Hamprecht, F A (2013). Automated Identification of Neuronal Activity from Calcium Imaging by Sparse Dictionary Learning. ISBI 2013. Proceedings. 1058-1061PDF icon Technical Report (2.82 MB)
Mikut, R, Dickmeis, T, Driever, W, Geurts, P, Hamprecht, F A, Kausler, B X, Ledesma-Carbayo, M, Marée, R, Mikula, K, Pantazis, P, Ronneberger, O, Santos, A and Stotzka, R (2013). Automated Processing of Zebrafish Imaging Data: A Survey. Zebrafish. 10 (3)PDF icon Technical Report (1.73 MB)
Kreshuk, A, Walecki, R, Köthe, U, Gierthmühlen, M, Plachta, D, Genoud, C, Haastert-Talini, K and Hamprecht, F A (2015). Automated Tracing of Myelinated Axons and Detection of the Nodes of Ranvier in Serial Images of Peripheral Nerves. Journal of Microscopy. 259 (2) 143-154
Zechmann, C M, Menze, B H, Kelm, B Michael, Zamecnik, P, Ikinger, U, Waldherr, R, Delorme, S, Hamprecht, F A and Bachert, P (2012). Automated vs. manual pattern recognition of 3D 1H MRSI data of patients with prostate cancer. Academic Radiology. 19, 6 675-684
Keuchel, J, Naumann, S, Heiler, M and Siegmund, A (2002). Automatic Land Cover Analysis for Tenerife by Supervised Classification using Remotely Sensed Data. Remote Sensing of Environment
Petra, S and Schnörr, C (2014). Average Case Recovery Analysis of Tomographic Compressive Sensing. Linear Algebra and its Applications. 441 168-198PDF icon Technical Report (1.85 MB)
Haußmann, M, Gerwinn, S and Kandemir, M (2019). Bayesian Prior Networks with PAC Training. arXiv preprint arXiv:1906.00816
Hissmann, M and Hamprecht, F A (2005). Bayesian surface estimation for white light interferometry. Optical Engineering. 44 1-9PDF icon Technical Report (549.46 KB)
Kamann, C and Rother, C (2019). Benchmarking the Robustness of Semantic Segmentation Models. http://arxiv.org/abs/1908.05005
Yarlagadda, P and Ommer, B (2015). Beyond the Sum of Parts: Voting with Groups of Dependent Entities. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 37 1134--1147. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6926849
Hansen, K, Rathke, F, Schroeter, T, Rast, G, Fox, T, Kriegl, J M and Mika, S (2009). Bias-correction of regression models: a case study on hERG inhibition. J. Chem. Inf. Model. 49 1486–1496
Voss, B, Stapf, J, Berthe, A and Garbe, C S (2012). Bichromatic Particle Streak Velocimetry bPSV -- Interfacial, v3C3D velocimetry using a single camera. Exp. Fluids
Fehr, J and Jähne, B (2012). Bilder berechnen - nicht nur aufnehmen. Optik & Photonik. 7 50-53
Fehr, J and Jähne, B (2012). Bilder berechnen --- nicht nur aufnehmen : ``Computational Photography'' wird zunehmend interessant für die industrielle Bildverarbeitung. Optik & Photonik. 7 50--53
Jähne, (1994). Bildverarbeitung für die Meeresforschung. Ruperto Carola. 10--15. http://www.uni-heidelberg.de/uni/presse/rc7/2.html
Keuchel, J, Schnörr, C, Schellewald, C and Cremers, D (2003). Binary Partitioning, Perceptual Grouping, and Restoration with Semidefinite Programming. 25 1364–1379
Ozlu, N, Monigatti, F, Renard, B Y, Field, C M, Steen, H, Mitchison, T J and Steen, J J (2009). Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition. Molecular & Cellular Proteomics
Bendinger, A L, Debus, C, Glowa, C, Karger, C P, Peter, J and Storath, M (2019). Bolus arrival time estimation in dynamic contrast-enhanced magnetic resonance imaging of small animals based on spline models, in press. Physics in Medicine and Biology. 64
Lempitsky, V, Blake, A and Rother, C (2012). Branch-and-mincut: Global optimization for image segmentation with high-level priors. Journal of Mathematical Imaging and Vision. 44 315–329
Mersmann, S, Seitel, A, Erz, M, Jähne, B, Nickel, F, Mieth, M, Mehrabi, A and Maier-Hein, L (2013). Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction. Med. Phys. 40 082701
Kleesiek, J, Morshuis, J Nikolas, Isensee, F, Deike-Hofmann, K, Paech, D, Kickingereder, P, Köthe, U, Rother, C, Forsting, M, Wick, W, Bendszus, M, Schlemmer, H Peter and Radbruch, A (2019). Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study. Investigative Radiology. 54 653–660

Pages