Publications

Export 1514 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
N
Neufeld, A, Berger, J, Becker, F, Lenzen, F and Schnörr, C (2015). Estimating Vehicle Ego-Motion and Piecewise Planar Scene Structure from Optical Flow in a Continuous Framework. 37th German Conference on Pattern Recognition. Springer, Aachen
Neumann, J, Schnörr, C and Steidl, G (2005). Efficient Wavelet Adaption for Hybrid Wavelet-Large Margin Classifiers. Pattern Recognition. 38 1815-1830
Neumann, J, Schnörr, C and Steidl, G (2005). Combined SVM-based Feature Selection and Classification. Machine Learning. 61 129-150
Neumann, J, Schnörr, C and Steidl, G (2003). Feasible Adaption Criteria for Hybrid Wavelet -- Large Margin Classifiers. Proc.~Computer Analysis of Images and Patterns (CAIP'03). Springer. 2756 588--595
Neumann, J, Schnörr, C and Steidl, G (2003). Effectively Finding The Optimal Wavelet For Hybrid Wavelet - Large Margin Signal Classification. Dept.~Math.~and Comp.~Science
Neumann, J, Schnörr, C and Steidl, G (2004). SVM-based Feature Selection by Direct Objective Minimisation. Pattern Recognition, Proc.~26th DAGM Symposium. Springer. 3175 212-219
Nicola, A, Petra, S, Popa, C and Schnörr, C (2011). A general extending and constraining procedure for linear iterative methods. Int.~J.~Comp.~Math. http://dx.doi.org/10.1080/00207160.2011.634002PDF icon Technical Report (633.79 KB)
Nicola, A, Petra, S, Popa, C and Schnörr, C (2009). On A General Extending And Constraining Procedure For Linear Iterative Methods. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9761PDF icon Technical Report (799.47 KB)
Niegel, D (2010). Messung Konvektionsgetriebener Transfergeschwindigkeit Von Sauerstoff An Der Luft-Wasser-Grenzfläche. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Nielsen, R (2004). Gasaustausch - Entwicklung und Ergebnis eines schnellen Massenbilanzverfahrens zur Messung der Austauschparameter. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/5032
Noffz, K - H, Lay, R, Männer, R, Jähne, B, Jähne, B, Geißler, P and Haußecker, H (1999). Field Programmable Gate Array image processing. Handbook of Computer Vision and Applications. Academic Press. 3: Systems and Applications
O
Ommer, B (2008). Seeing The Objects Behind The Parts: Learning Compositional Models For Visual Recognition. VDM Verlag. http://www.amazon.com/Seeing-Objects-Behind-Parts-Compositional/dp/3639021444/ref=sr_1_1?ie=UTF8&s=books&qid=1232659136&sr=1-1
Ommer, B (2013). The Role of Shape in Visual Recognition. Shape Perception in Human Computer Vision: An Interdisciplinary Perspective. Springer. 373--385PDF icon Technical Report (8.18 MB)
Ommer, B and Buhmann, J M (2003). A Compositionality Architecture for Perceptual Feature Grouping. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 2683 275--290PDF icon Technical Report (2.89 MB)
Ommer, B and Buhmann, J M (2007). Learning the Compositional Nature of Visual Objects. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 1--8PDF icon Technical Report (2.78 MB)
Ommer, B and Buhmann, J M (2005). Object Categorization by Compositional Graphical Models. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 3757 235--250PDF icon Technical Report (2.07 MB)
Ommer, B and Buhmann, J M (2010). Learning the Compositional Nature of Visual Object Categories for Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 32 501--516PDF icon Technical Report (2.78 MB)
Ommer, B and Malik, J (2009). Multi-scale Object Detection by Clustering Lines. Proceedings of the IEEE International Conference on Computer Vision. IEEE. 484--491PDF icon Technical Report (3.18 MB)
Ommer, B and Buhmann, J M (2006). Learning Compositional Categorization Models. Proceedings of the European Conference on Computer Vision. Springer. 3953 316--329PDF icon Technical Report (1.35 MB)
Ommer, B and Buhmann, J M (2007). Compositional Object Recognition, Segmentation, and Tracking in Video. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 4679 318--333PDF icon Technical Report (2.78 MB)
Ommer, B, Mader, T and Buhmann, J M (2009). Seeing the Objects Behind the Dots: Recognition in Videos from a Moving Camera. International Journal of Computer Vision. Springer. 83 57--71PDF icon Technical Report (9.61 MB)
Ommer, B, Sauter, M and M., B J (2006). Learning Top-Down Grouping of Compositional Hierarchies for Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Perceptual Organization in Computer Vision. IEEE. 194--194PDF icon Technical Report (358.98 KB)
Ozlu, N, Monigatti, F, Renard, B Y, Field, C M, Steen, H, Mitchison, T J and Steen, J J (2009). Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition. Molecular & Cellular Proteomics
P
Pandey, N (2019). Weakly Supervised Semantic Segmentation. Heidelberg University
Pape, C (2016). Automatic Segmentation Of Neurites From Anisotropic Em-Imaging. University of Heidelberg
Pape, C, Beier, T, Li, P, Jain, V, Brock, D D and Kreshuk, A (2017). Solving Large Multicut Problems for Connectomics via Domain Decomposition. Bioimage Computing Workshop. ICCV. 1-10
(2005). Variational, Geometric and Level Sets in Computer Vision (VLSM'05). Springer. 3752
Pavlov, P (2008). Analysis of Motion in Scale Space. IWR, Fakultät für Mathematik und Informatik, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9378
Peckar, W, Schnörr, C, Rohr, K and Stiehl, H S (1998). Non-Rigid Image Registration Using a Parameter-Free Elastic Model. 9th British Machine Vision Conference (BMVC`98). 134--143
Peckar, W, Schnörr, C, Rohr, K, Stiehl, H S and Spetzger, U (1998). Linear and Incremental Estimation of Elastic Deformations in Medical Registration Using Prescribed Displacements. Machine Graphics & Vision. 7 807--829
Peckar, W, Schnörr, C, Rohr, K and Stiehl, H S (1999). Parameter-Free Elastic Deformation Approach for 2D and 3D Registration Using Prescribed Displacements. J.~Math.~Imaging and Vision. 10 143--162
Peckar, W, Schnörr, C, Rohr, K and Stiehl, H S (1997). Two-Step Parameter-Free Elastic Image Registration with Prescribed Point Displacements. Proc.~9th Int.~Conf.~on Image Analysis and Processing (ICIAP'97)
Peter, S (2015). Spatio-Temporal Motif Deconvolution For Calcium Image Analysis. University of Heidelberg
Peter, S, Kirschbaum, E, Both, M, Campbell, L A, Harvey, B K, Heins, C, Durstewitz, D, Diego, F and Hamprecht, F A (2017). Sparse convolutional coding for neuronal assembly detection. NIPS, poster
Peter, S, Diego, F, Hamprecht, F A and Nadler, B (2017). Cost-efficient Gradient Boosting. NIPS, poster

Pages