Publications
Journal Article
Hayn, M, Beirle, S, Hamprecht, F A, Platt, U, Menze, B H and Wagner, T (2009).
Analysing spatio-temporal patterns of the global NO2-distribution retrieved frome GOME satellite observations using a generalized additive model.
Atmospheric Chemistry and Physics.
9 9367-9398
Technical Report (2.52 MB) Hanselmann, M, Röder, J, Köthe, U, Renard, B Y, Heeren, R M A and Hamprecht, F A (2012).
Active Learning for Convenient Annotation and Classification of Secondary Ion Mass Spectrometry Images.
Analytical Chemistry.
85 (1) 147-155
Technical Report (2.58 MB) Andres, B, Köthe, U, Kröger, T, Helmstaedter, M, Briggmann, K L, Denk, W and Hamprecht, F A (2012).
3D Segmentation of SBFSEM Images of Neuropil by a Graphical Model over Supervoxel Boundaries.
Medical Image Analysis.
16 (2012) 796-805
Technical Report (20.85 MB) Conference Proceedings
Kandemir, M, Haußmann, M, Diego, F, Rajamani, K, van der Laak, J and Hamprecht, F A (2016).
Variational weakly-supervised Gaussian processes.
BMVC. Proceedings Technical Report (3.28 MB) Haußmann, M, Hamprecht, F A and Kandemir, M (2017).
Variational Bayesian Multiple Instance Learning with Gaussian Processes.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6570-6579
Technical Report (1.29 MB) Peter, S, Kirschbaum, E, Both, M, Campbell, L A, Harvey, B K, Heins, C, Durstewitz, D, Diego, F and Hamprecht, F A (2017).
Sparse convolutional coding for neuronal assembly detection.
NIPS, poster Wolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2018).
The Mutex Watershed: Efficient, Parameter-Free Image Partitioning.
ECCV. Proceedings. Springer. 571-587
Kirschbaum, E, Haußmann, M, Wolf, S, Sonntag, H, Schneider, J, Elzoheiry, S, Kann, O, Durstewitz, D and Hamprecht, F A (2019).
LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos.
ICLR. Proceedings von Borstel, M, Kandemir, M, Schmidt, P, Rao, M, Rajamani, K and Hamprecht, F A (2016).
Gaussian process density counting from weak supervision.
ECCV. Proceedings. Springer.
LNCS 9905 365-380
Technical Report (1.71 MB) Hehn, T and Hamprecht, F A (2018).
End-to-end Learning of Deterministic Decision Trees.
German Conference on Pattern Recognition. Proceedings. Springer.
LNCS 11269 612-627
Technical Report (1.4 MB) Pages