Publications

Export 104 results:
Author Title [ Type(Asc)] Year
Filters: Author is Björn Ommer  [Clear All Filters]
Conference Paper
Brattoli, B, Büchler, U, Wahl, A - S, Schwab, M E and Ommer, B (2017). LSTM Self-Supervision for Detailed Behavior Analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (BB and UB contributed equally)PDF icon Article (8.75 MB)
Antic, B, Milbich, T and Ommer, B (2013). Less is More: Video Trimming for Action Recognition. Proceedings of the IEEE International Conference on Computer Vision, Workshop on Understanding Human Activities: Context and Interaction. IEEE. 515--521PDF icon Technical Report (984.89 KB)
Ommer, B, Sauter, M and M., B J (2006). Learning Top-Down Grouping of Compositional Hierarchies for Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Perceptual Organization in Computer Vision. IEEE. 194--194PDF icon Technical Report (358.98 KB)
Ghori, O, Mackowiak, R, Bautista, M, Beuter, N, Drumond, L, Diego, F and Ommer, B (2018). Learning to Forecast Pedestrian Intention from Pose Dynamics. Intelligent Vehicles, IEEE, 2018
Ommer, B and Buhmann, J M (2007). Learning the Compositional Nature of Visual Objects. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 1--8PDF icon Technical Report (2.78 MB)
Afifi, M, Derpanis, K G, Ommer, B and Brown, M S (2021). Learning Multi-Scale Photo Exposure Correction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2003.11596
Antic, B and Ommer, B (2014). Learning Latent Constituents for Recognition of Group Activities in Video. Proceedings of the European Conference on Computer Vision (ECCV) (Oral). Springer. 33--47PDF icon Technical Report (4.54 MB)
Yarlagadda, P, Eigenstetter, A and Ommer, B (2012). Learning Discriminative Chamfer Regularization. BMVC. Springer. 1--11. http://www.bmva.org/bmvc/2012/BMVC/paper020/paper020.pdf
Ommer, B and Buhmann, J M (2006). Learning Compositional Categorization Models. Proceedings of the European Conference on Computer Vision. Springer. 3953 316--329PDF icon Technical Report (1.35 MB)
Büchler, U, Brattoli, B and Ommer, B (2018). Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning. Proceedings of the European Conference on Computer Vision (ECCV). (UB and BB contributed equally), Munich, GermanyPDF icon Article (5.34 MB)PDF icon buechler_eccv18_poster.pdf (1.65 MB)
Yarlagadda, P and Ommer, B (2012). From Meaningful Contours to Discriminative Object Shape. Proceedings of the European Conference on Computer Vision. Springer. 7572 766--779PDF icon Technical Report (4.58 MB)
Roth, V and Ommer, B (2006). Exploiting Low-level Image Segmentation for Object Recognition. Pattern Recognition, Symposium of the DAGM. Springer. 4174 11--20PDF icon Technical Report (473.84 KB)
Kandemir, M, Rubio, J C, Schmidt, U, Wojek, C, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. Medical Image Computing and Computer-Assisted Intervention. Springer. 154--161PDF icon Technical Report (2 MB)
Kandemir, M, Rubio, J C, Schmidt, U, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. MICCAI. Proceedings. Springer. 154-161PDF icon Paper (2 MB)
Wagner, J and Ommer, B (2010). Efficiently Clustering Earth Mover's Distance. Proceedins of the Aian Conference on Computer Vision. Springer. 477--488PDF icon Technical Report (841.98 KB)
Schlecht, J, Carque, B and Ommer, B (2011). Detecting Gestures in Medieval Images. Proceedings of the International Conference on Image Processing. IEEE. 1309--1312PDF icon Technical Report (1.61 MB)
Bautista, M, Sanakoyeu, A and Ommer, B (2017). Deep Unsupervised Similarity Learning using Partially Ordered Sets. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon deep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
Ufer, N and Ommer, B (2017). Deep Semantic Feature Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon article (8.88 MB)
Sayed, N, Brattoli, B and Ommer, B (2018). Cross and Learn: Cross-Modal Self-Supervision. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, Germany. https://arxiv.org/abs/1811.03879v1PDF icon Article (891.47 KB)PDF icon Oral slides (9.17 MB)
Schlecht, J and Ommer, B (2011). Contour-based Object Detection. BMVC. 1--9PDF icon Technical Report (2.62 MB)
Kotovenko, D, Sanakoyeu, A, Lang, S and Ommer, B (2019). Content and Style Disentanglement for Artistic Style Transfer. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Keränen, S V E, DePace, A, Hendriks, C L Luengo, Fowlkes, C, Arbelaez, P, Ommer, B, Brox, T, Henriquez, C, Wunderlich, Z, Eckenrode, K, Fischer, B, Hammonds, A and Celniker, S E (2009). Computational Analysis of Quantitative Changes in Gene Expression and Embryo Morphology between Species. Evolution-The Molecular Landscape
Ommer, B and Buhmann, J M (2003). A Compositionality Architecture for Perceptual Feature Grouping. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 2683 275--290PDF icon Technical Report (2.89 MB)
Ommer, B and Buhmann, J M (2007). Compositional Object Recognition, Segmentation, and Tracking in Video. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 4679 318--333PDF icon Technical Report (2.78 MB)
Bautista, M, Sanakoyeu, A, Sutter, E and Ommer, B (2016). CliqueCNN: Deep Unsupervised Exemplar Learning. Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS). MIT Press, Barcelona. https://arxiv.org/abs/1608.08792PDF icon Article (5.79 MB)
Monroy, A, Eigenstetter, A and Ommer, B (2011). Beyond Straight Lines - Object Detection using Curvature. International Conference on Image Processing (ICIP). IEEEPDF icon Technical Report (2.65 MB)
Arnold, M, Bell, P and Ommer, B (2013). Automated Learning of Self-Similarity and Informative Structures in Architecture. Scientific Computing & Cultural Heritage
Takami, M, Bell, P and Ommer, B (2014). An Approach to Large Scale Interactive Retrieval of Cultural Heritage. Eurographics Workshop on Graphics and Cultural Heritage. The Eurographics AssociationPDF icon Technical Report (7.94 MB)
Book Chapter
Yarlagadda, P, Monroy, A, Carque, B and Ommer, B (2013). Towards a Computer-based Understanding of Medieval Images. Scientific Computing & Cultural Heritage. Springer. 89--97. http://link.springer.com/chapter/10.1007/978-3-642-28021-4_10
Ommer, B (2013). The Role of Shape in Visual Recognition. Shape Perception in Human Computer Vision: An Interdisciplinary Perspective. Springer. 373--385PDF icon Technical Report (8.18 MB)
Garbe, C S and Ommer, B (2013). Parameter Estimation in Image Processing and Computer Vision. Model Based Parameter Estimation: Theory and Applications. Springer. 311--334PDF icon Technical Report (928 KB)
Bell, P and Ommer, B (2016). Digital Connoisseur? How Computer Vision Supports Art History. Connoisseurship nel XXI secolo. Approcci, Limiti, Prospettive, A. Aggujaro & S. Albl (ed.). Artemide, Rome
Bell, P and Ommer, B (2018). Computer Vision und Kunstgeschichte — Dialog zweier Bildwissenschaften. Computing Art Reader: Einführung in die digitale Kunstgeschichte, P. Kuroczyński et al. (ed.)PDF icon 413-17-83318-2-10-20181210.pdf (2.98 MB)

Pages