Publications

Export 223 results:
Author Title [ Type(Desc)] Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
Conference Paper
F. Becker, Wieneke, B., Yuan, J., and Schnörr, C., A Variational Approach to Adaptive Correlation for Motion Estimation in Particle Image Velocimetry, in Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 335--344.PDF icon Technical Report (1.82 MB)
F. Becker, Wieneke, B., Yuan, J., and Schnörr, C., A Variational Approach to Adaptive Correlation for Motion Estimation in Particle Image Velocimetry, in Pattern Recognition – 30th DAGM Symposium, 2008, vol. 5096, pp. 335–344.
F. Becker, Wieneke, B., Yuan, J., and Schnörr, C., Variational Correlation Approach to Flow Measurement with Window Adaption, in 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2008, p. 1.1.8.
F. Becker, Wieneke, B., Yuan, J., and Schnörr, C., Variational Correlation Approach to Flow Measurement with Window Adaption, in 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2008, p. 1.1.3.PDF icon Technical Report (3.37 MB)
F. Becker, Wieneke, B., Yuan, J., and Schnörr, C., Variational Correlation Approach to Flow Measurement with Window Adaption, in 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2008, p. 1.1.3.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., Variational Image Denoising with Adaptive Constraint Sets, in Proceedings of the 3nd International Conference on Scale Space and Variational Methods in Computer Vision 2011, in press, 2011, vol. 6667, pp. 206-217.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., Variational Image Denoising with Adaptive Constraint Sets, in LNCS, 2012, pp. 206-217.PDF icon Technical Report (649.03 KB)
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., Variational Image Denoising with Adaptive Constraint Sets, in Proceedings of the 3rd International Conference on Scale Space and Variational Methods in Computer Vision 2011, 2012, pp. 206-217.
P. Swoboda and Schnörr, C., Variational Image Segmentation and Cosegmentation with the Wasserstein Distance, in Energy Minimization Methods in Computer Vision and Pattern Recognition, 2013, vol. 8081, p. 321--334.PDF icon Technical Report (8.06 MB)
P. Swoboda and Schnörr, C., Variational Image Segmentation and Cosegmentation with the Wasserstein Distance, in Energy Minimization Methods in Computer Vision and Pattern Recognition, 2013, vol. 8081, pp. 321–334.
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C., Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences, in 2011 IEEE International Conference on Computer Vision ICCV, 2011, pp. 1692-1699.
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C., Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences, in 2011 IEEE International Conference on Computer Vision (ICCV), 2011, p. 1692 -- 1699.PDF icon Technical Report (4.9 MB)
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C., Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences, in 2011 IEEE International Conference on Computer Vision (ICCV), 2011, pp. 1692 – 1699.
C. Gosch, Fundana, K., Heyden, A., and Schnörr, C., View Point Tracking of Rigid Object Based on Shape Sub-Manifolds, in Computer Vision -- ECCV 2008, 2008, vol. 5302, p. 251--263.PDF icon Technical Report (523.17 KB)
C. Gosch, Fundana, K., Heyden, A., and Schnörr, C., View Point Tracking of Rigid Object Based on Shape Sub-Manifolds, in Computer Vision – ECCV 2008, 2008, vol. 5302, pp. 251–263.
B. Schmitzer and Schnörr, C., Weakly Convex Coupling Continuous Cuts and Shape Priors, in Scale Space and Variational Methods (SSVM 2011), 2012, pp. 423-434.
In Collection
S. Petra, Schröder, A., and Schnörr, C., 3D Tomography from Few Projections in Experimental Fluid Mechanics, Imaging Measurement Methods for Flow Analysis, vol. 106. Springer, pp. 63-72, 2009.PDF icon Technical Report (411.51 KB)
F. Becker, Petra, S., and Schnörr, C., Optical Flow, Handbook of Mathematical Methods in Imaging. Springer, 2014.
F. Rathke, Schmidt, S., and Schnörr, C., Order preserving and shape prior constrained intra-retinal layer segmentation in optical coherence tomography, Medical Image Computing and Computer-Assisted Intervention (MICCAI 2011), vol. 6893. Springer, pp. 370–377, 2011.
M. Bergtholdt and Schnörr, C., Shape Priors and Online Appearance Learning for Variational Segmentation and Object Recognition in Static Scenes, Pattern Recognition, Proc. 27th DAGM Symposium, vol. 3663. Springer, pp. 342–350, 2005.
A. Vlasenko and Schnörr, C., Variational Approaches for Model-Based PIV and Visual Fluid Analysis, Imaging Measurement Methods for Flow Analysis, vol. 106. Springer, pp. 247-256, 2009.PDF icon Technical Report (3.39 MB)
M. Bergtholdt, Cremers, D., and Schnörr, C., Variational Segmentation with Shape Priors, Handbook of Mathematical Models in Computer Vision. Springer, pp. 147-160, 2005.
Journal Article
W. Hinterberger, Scherzer, O., Schnörr, C., and Weickert, J., Analysis of Optical Flow Models in the Framework of Calculus of Variations, Numer. Funct. Anal. Optimiz., vol. 23, pp. 69–89, 2002.
N. Gianniotis, Schnörr, C., Molkenthin, C., and Bora, S. S., Approximate variational inference based on a finite sample of Gaussian latent variables, Patt.~Anal.~Appl., 2015.PDF icon Technical Report (1.4 MB)
S. Petra and Schnörr, C., Average Case Recovery Analysis of Tomographic Compressive Sensing, Linear Algebra and its Applications, vol. 441, pp. 168-198, 2014.PDF icon Technical Report (1.85 MB)
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., A Class of Quasi-Variational Inequalities for Adaptive Image Denoising and Decomposition, Computational Optimization and Applications (COAP), vol. 54 (2), pp. 371-398, 2013.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., A class of quasi-variational inequalities for adaptive image denoising and decomposition, Computational Optimization and Applications, vol. 54, pp. 371-398, 2013.PDF icon Technical Report (748.66 KB)
D. Breitenreicher, Lellmann, J., and Schnörr, C., COAL: a generic modelling and prototyping framework for convex optimization problems of variational image analysis, Optimization Methods and Software, vol. 28, pp. 1081-1094, 2013.PDF icon Technical Report (1.69 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, pp. 1-30, 2015.PDF icon Technical Report (1.5 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, CoRR, 2014.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, Int.~J.~Comp.~Vision, 2015.PDF icon Technical Report (5.12 MB)

Pages