Publications

Export 114 results:
Author Title [ Type(Desc)] Year
Filters: Author is Björn Ommer  [Clear All Filters]
Journal Article
S. Lang and Ommer, B., Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods, Arts, Computational Aesthetics, vol. 7, 64, no. 64, 2018.PDF icon arts-07-00064.pdf (4.6 MB)
B. Ommer, Mader, T., and Buhmann, J. M., Seeing the Objects Behind the Dots: Recognition in Videos from a Moving Camera, International Journal of Computer Vision, vol. 83, p. 57--71, 2009.PDF icon Technical Report (9.61 MB)
T. Milbich, Roth, K., Brattoli, B., and Ommer, B., Sharing Matters for Generalization in Deep Metric Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
B. Antic and Ommer, B., Spatio-temporal Video Parsing for Abnormality Detection, arXiv, vol. abs/1502.06235, 2015.PDF icon Technical Report (4.61 MB)
P. Bell and Ommer, B., Training Argus, Kunstchronik. Monatsschrift für Kunstwissenschaft, Museumswesen und Denkmalpflege, vol. 68, p. 414--420, 2015.
S. Lang and Ommer, B., Transforming Information Into Knowledge: How Computational Methods Reshape Art History, Digital Humanities Quaterly (DHQ), vol. 15, no. 3, 2021.
S. Lang and Ommer, B., Transforming Information Into Knowledge: How Computational Methods Reshape Art History, Digital Humanities Quaterly (DHQ), vol. 15, no. 3, 2021.
B. Brattoli, Büchler, U., Dorkenwald, M., Reiser, P., Filli, L., Helmchen, F., Wahl, A. - S., and Ommer, B., Unsupervised behaviour analysis and magnification (uBAM) using deep learning, Nature Machine Intelligence, 2021.
T. Milbich, Ghori, O., and Ommer, B., Unsupervised Representation Learning by Discovering Reliable Image Relations, Pattern Recognition, vol. 102, 2020.

Pages