Publications

Export 277 results:
Author [ Title(Asc)] Type Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
Rathke, F, Schmidt, S and Schnörr, C (2011). Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography. MICCAI. Springer. 6893 370--377PDF icon Technical Report (1.12 MB)
Rathke, F, Schmidt, S and Schnörr, C (2011). Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography. MICCAI 2011, Proceedings. Springer. 6893 370-377
Lellmann, J, Lenzen, F and Schnörr, C (2010). Optimality Bounds for Variational Relaxations of Optimal Partition Problems
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Energy Min. Meth. Comp. Vis. Patt. Recogn. Springer. 6819 132--146PDF icon Technical Report (1 MB)
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds For A Variational Relaxation Of The Image Partitioning Problem. IPA group, Heidelberg University. http://arxiv.org/abs/1112.0974
Lellmann, J, Lenzen, F and Schnörr, C (2012). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Journal of Mathematical Imaging and Vision. Springer. 47 239-257PDF icon Technical Report (616.16 KB)
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Energy Min. Meth. Comp. Vis. Patt. Recogn. Springer. 132-146
Lellmann, J, Lenzen, F and Schnörr, C (2013). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Journal of Mathematical Imaging and Vision. 47 (3) 239-257
Ruhnau, P and Schnörr, C (2007). Optical Stokes Flow Estimation: An Imaging-Based Control Approach. Exp.~in Fluids. 42 61--78PDF icon Technical Report (1.54 MB)
Becker, F, Petra, S and Schnörr, C (2014). Optical Flow. Handbook of Mathematical Methods in Imaging. Springer
Ruhnau, P, Stahl, A and Schnörr, C (2006). On-Line Variational Estimation of Dynamical Fluid Flows with Physics-Based Spatio-Temporal Regularization. Proc.~DAGM 2006. Springer. 375-388 375-388PDF icon Technical Report (902.47 KB)
Schmitzer, B and Schnörr, C (2013). Object Segmentation by Shape Matching with Wasserstein Modes. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013). 123-136
M
Cremers, D, Sochen, N and Schnörr, C (2006). Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation. IJCV. 66 67-81
Cremers, D, Sochen, N and Schnörr, C (2004). Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation. Computer Vision -- ECCV 2004. Springer. 3024 74-86
Bruhn, A, Weickert, J, Kohlberger, T and Schnörr, C (2006). A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods. Int.~J.~Computer Vision. 70 257-277PDF icon Technical Report (447.65 KB)
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer Berlin / Heidelberg. 6313 735--747PDF icon Technical Report (1.49 MB)
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer. 6313 735--747
Schnörr, C and Peckar, W (1995). Motion-Based Identification of Deformable Templates. Proc. 6th Int. Conf. on Computer Analysis of Images and Patterns (CAIP '95). Springer Verlag. 970 122-129
Cremers, D and Schnörr, C (2002). Motion Competition: Variational Integration of Motion Segmentation and Shape Regularization. Pattern Recognition, Proc.~24th DAGM Symposium. Springer. 2449 472--480
Schmitzer, B and Schnörr, C (2013). Modelling convex shape priors and matching based on the Gromov-Wasserstein distance. Journal of Mathematical Imaging and Vision. 46 143-159PDF icon Technical Report (957.78 KB)
Wulf, M, Stiehl, H S and Schnörr, C (1999). Modeling spatiotemporal receptive fields in the primate retina. Proc.~Cognitive Neurosci.~Conf
Breitenreicher, D and Schnörr, C (2011). Model-Based Multiple Rigid Object Detection and Registration in Unstructured Range Data. Int.~J.~Comp.~Vision. 92 32--52. http://www.springerlink.com/content/v266873267180602/PDF icon Technical Report (4.3 MB)
Wulf, M, Stiehl, H S and Schnörr, C (1999). A model of spatiotemporal receptive fields in the primate retina. Proc.~1st Göttingen Conf.~German Neurosci.~Soc.. II
Welk, M, Weickert, J, Becker, F, Schnörr, C, Feddern, C and Burgeth, B (2007). Median and related local filters for tensor-valued images. Signal Processing. 87 291-308PDF icon Technical Report (1007.29 KB)
Welk, M, Becker, F, Schnörr, C and Weickert, J (2005). Matrix-Valued Filters as Convex Programs. Scale-Space 2005. Springer. 3459 204--216
Kappes, J H, Beier, T and Schnörr, C (2014). MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves. Computer Vision - {ECCV} 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part {II}. http://dx.doi.org/10.1007/978-3-319-16181-5_37PDF icon Technical Report (557.49 KB)
Kappes, J H and Schnörr, C (2008). MAP-Inference for Highly-Connected Graphs with DC-Programming. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 1--10PDF icon Technical Report (1.91 MB)

Pages