Publications

Export 223 results:
Author [ Title(Asc)] Type Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
D. Cremers, Sochen, N., and Schnörr, C., Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation, in Computer Vision – ECCV 2004, 2004, vol. 3024, pp. 74-86.
D. Cremers, Sochen, N., and Schnörr, C., Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation, ijcv, vol. 66, pp. 67-81, 2006.
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C., A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods, Int.~J.~Computer Vision, vol. 70, pp. 257-277, 2006.PDF icon Technical Report (447.65 KB)
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C., A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods, Int. J. Computer Vision, vol. 70, pp. 257-277, 2006.
J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Multicuts and Perturb & MAP for Probabilistic Graph Clustering, Journal of Mathematical Imaging and Vision, vol. 56, pp. 221–237, 2016.
J. H. Kappes, Schmidt, S., and Schnörr, C., MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation, in European Conference on Computer Vision (ECCV), 2010, vol. 6313, p. 735--747.
J. H. Kappes, Schmidt, S., and Schnörr, C., MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation, in European Conference on Computer Vision (ECCV), 2010, vol. 6313, p. 735--747.PDF icon Technical Report (1.49 MB)
D. Cremers and Schnörr, C., Motion Competition: Variational Integration of Motion Segmentation and Shape Regularization, in Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 472–480.
B. Schmitzer and Schnörr, C., Modelling convex shape priors and matching based on the Gromov-Wasserstein distance, Journal of Mathematical Imaging and Vision, vol. 46, pp. 143-159, 2013.PDF icon Technical Report (957.78 KB)
B. Schmitzer and Schnörr, C., Modelling convex shape priors and matching based on the Gromov-Wasserstein distance, Journal of Mathematical Imaging and Vision, vol. 46, pp. 143-159, 2013.
D. Breitenreicher and Schnörr, C., Model-Based Multiple Rigid Object Detection and Registration in Unstructured Range Data, Int.~J.~Comp.~Vision, vol. 92, p. 32--52, 2011.PDF icon Technical Report (4.3 MB)
D. Breitenreicher and Schnörr, C., Model-Based Multiple Rigid Object Detection and Registration in Unstructured Range Data, Int. J. Comp. Vision, vol. 92, pp. 32–52, 2011.
M. Welk, Weickert, J., Becker, F., Schnörr, C., Feddern, C., and Burgeth, B., Median and related local filters for tensor-valued images, Signal Processing, vol. 87, pp. 291-308, 2007.PDF icon Technical Report (1007.29 KB)
M. Welk, Becker, F., Schnörr, C., and Weickert, J., Matrix-Valued Filters as Convex Programs, in Scale-Space 2005, 2005, vol. 3459, pp. 204–216.
J. H. Kappes, Beier, T., and Schnörr, C., MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves, in Computer Vision - {ECCV} 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part {II}, 2014.PDF icon Technical Report (557.49 KB)
J. Hendrik Kappes, Beier, T., and Schnörr, C., MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves, in International Workshop on Graphical Models in Computer Vision, 2014.
J. H. Kappes and Schnörr, C., MAP-Inference for Highly-Connected Graphs with DC-Programming, in Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 1--10.PDF icon Technical Report (1.91 MB)

Pages