Publications
Conference Paper
Brachmann, E, Michel, F, Krull, A, Yang, M Ying, Gumhold, S and Rother, C (2016).
Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
2016-Decem 3364–3372
Brachmann, E, Michel, F, Krull, A, Yang, M Ying, Gumhold, S and Rother, C (2016).
Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
2016-Decem 3364–3372
Krull, A, Brachmann, E, Nowozin, S, Michel, F, Shotton, J and Rother, C (2017).
PoseAgent: Budget-constrained 6D object pose estimation via reinforcement learning.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017.
2017-Janua 2566–2574.
http://arxiv.org/abs/1612.03779 Michel, F, Krull, A, Brachmann, E, Yang, M Ying, Gumhold, S and Rother, C (2015).
Pose Estimation of Kinematic Chain Instances via Object Coordinate Regression. 181.1–181.11
Brachmann, E and Rother, C (2019).
Neural-guided RANSAC: Learning where to sample model hypotheses.
Proceedings of the IEEE International Conference on Computer Vision.
2019-Octob 4321–4330.
http://arxiv.org/abs/1905.04132 PDF (8.02 MB) Krull, A, Brachmann, E, Michel, F, Yang, M Ying, Gumhold, S and Rother, C (2015).
Learning analysis-by-synthesis for 6d pose estimation in RGB-D images.
Proceedings of the IEEE International Conference on Computer Vision.
2015 Inter 954–962
Hosseini Jafari, O, Mustikovela, S Karthik, Pertsch, K, Brachmann, E and Rother, C (2019).
iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
11363 LNCS 477–492
Michel, F, Kirillov, A, Brachmann, E, Krull, A, Gumhold, S, Savchynskyy, B and Rother, C (2017).
Global hypothesis generation for 6D object pose estimation.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017.
2017-Janua 115–124.
http://arxiv.org/abs/1612.02287 Brachmann, E, Krull, A, Nowozin, S, Shotton, J, Michel, F, Gumhold, S and Rother, C (2017).
DSAC - Differentiable RANSAC for camera localization.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017.
2017-Janua 2492–2500.
http://arxiv.org/abs/1611.05705 Kluger, F, Brachmann, E, Ackermann, H, Rother, C, Yang, M Ying and Rosenhahn, B (2020).
CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus.
CVPR 2020.
http://arxiv.org/abs/2001.02643 PDF (9.95 MB) Hodaň, T, Michel, F, Brachmann, E, Kehl, W, Buch, A Glent, Kraft, D, Drost, B, Vidal, J, Ihrke, S, Zabulis, X, Sahin, C, Manhardt, F, Tombari, F, Kim, T Kyun, Matas, J and Rother, C (2018).
BOP: Benchmark for 6D object pose estimation.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
11214 LNCS 19–35.
http://arxiv.org/abs/1808.08319