Publications

Export 192 results:
Author Title [ Type(Asc)] Year
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
In Collection
Hamprecht, F A and Agrell, E (2003). Exploring a space of materials: spatial sampling design and subset selection. Experimental Design for Combinatorial and High Throughput Materials Development. WileyPDF icon Technical Report (2.28 MB)
Hader, S and Hamprecht, F A (2003). Efficient Density Clustering. Between Data Science and Applied Data Analysis. Springer. 39-48
Hamprecht, F A (2004). Classification. Practical Handbook on Image Processing for Scientific and Technical Applications. CRC Press. 509-519PDF icon Technical Report (320.84 KB)
Conference Proceedings
Kreshuk, A, Funke, J, Cardona, A and Hamprecht, F A (2015). Who is talking to whom: synaptic partner detection in anisotropic volumes of insect brain. MICCAI. Proceedings. Springer. LNCS 9349 661-668PDF icon Technical Report (2.14 MB)
Diego, F and Hamprecht, F A (2016). Structured Regression Gradient Boosting. CVPR. Proceedings. 1459-1467PDF icon Technical Report (3.97 MB)
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation. UAI. Proceedings, in press
Schnörr, C and Jähne, B (2007). Pattern Recognition, 29th DAGM Symposium, Heidelberg, Germany, September 12-14. Springer. 4713
(2007). Pattern Recognition -- 29th DAGM Symposium. Springer. 4713
Weiler, M, Hamprecht, F A and Storath, M (2018). Learning Steerable Filters for Rotation Equivariant CNNs. CVPR
Haubold, C, Uhlmann, V, Unser, M and Hamprecht, F A (2017). Diverse M-best Solutions by Dynamic Programming. GCPR. Proceedings. Springer. LNCS 10496 255-267
Kandemir, M and Hamprecht, F A (2015). The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors. NIPS. Proceedings. 44 145-159PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Deep Active Learning with Adaptive Acquisition. IJCAI. Proceedings, in press
Kandemir, M and Hamprecht, F A (2015). Cell event detection in phase-contrast microscopy sequences from few annotations. MICCAI. Proceedings. Springer. LNCS 9351 316-323PDF icon Technical Report (564.69 KB)
Conference Paper
Zhang, C, Huber, F, Knop, M and Hamprecht, F A (2014). Yeast Cell Detection and Segmentation in Bright Field Microscopy. ISBI. Proceedings. IEEE Computer Society. 1267-1270PDF icon Technical Report (4.13 MB)
Straehle, C, Köthe, U and Hamprecht, F A (2013). Weakly supervised learning of image partitioning using decision trees with structured split criteria. ICCV 2013. Proceedings. 1849-1856PDF icon Technical Report (5.97 MB)
Fiaschi, L, Diego, F, Grosser, K - H, Schiegg, M, Köthe, U, Zlatic, M and Hamprecht, F A (2014). Tracking indistinguishable translucent objects over time using weakly supervised structured learning. CVPR. Proceedings. 2736 - 2743PDF icon Technical Report (1.47 MB)
Rapp, H, Frank, M, Hamprecht, F A and Jähne, B (2007). A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight cameras. Proc.\ Dyn3D Workshop, Heidelberg, Sept. 11, 2007. ZESS, Univ.\ Siegen
Lou, X and Hamprecht, F A (2011). Structured Learning for Cell Tracking. NIPS 2011. Proceedings. 1296-1304PDF icon Technical Report (1.41 MB)
Diego, F and Hamprecht, F A (2014). Sparse Space-Time Deconvolution for Calcium Image Analysis. NIPS. Proceedings. 64-72. http://papers.nips.cc/paper/5342-sparse-space-time-deconvolution-for-calcium-image-analysisPDF icon Technical Report (5.27 MB)
Görlitz, L, Menze, B H, Weber, M - A and Kelm, B M (2007). Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields. Pattern Recognition. Springer. 4713 224-233PDF icon Technical Report (872.46 KB)
Görlitz, L, Menze, B H, Weber, M - A and Kelm, B M (2007). Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields. Pattern Recognition. Springer. 4713 224-233PDF icon Technical Report (872.46 KB)
Drory, A, Haubold, C, Avidan, S and Hamprecht, F A (2014). Semi-Global Matching: A Principled Derivation in Terms of Message Passing. GCPR. Proceedings. 43-53PDF icon Technical Report (2.6 MB)
Andres, B, Hamprecht, F A and Garbe, C S (2007). Selection of Local Optical Flow Models by Means of Residual Analysis. Pattern Recognition. Springer. 4713 72-81PDF icon Technical Report (229.64 KB)
Andres, B, Garbe, C S, Schnörr, C and Jähne, B (2007). Selection of local optical flow models by means of residual analysis. Proceedings of the 29th DAGM Symposium on Pattern Recognition. Springer. 72--81
Andres, B, Hamprecht, F A and Garbe, C S (2007). Selection of Local Optical Flow Models by Means of Residual Analysis. Pattern Recognition. Springer. 4713 72-81PDF icon Technical Report (229.64 KB)
Andres, B, Garbe, C S, Schnörr, C and Jähne, B (2007). Selection of local optical flow models by means of residual analysis. Proceedings of the 29th DAGM Symposium on Pattern Recognition. Springer. 72--81
Andres, B, Köthe, U, Helmstaedter, M, Denk, W and Hamprecht, F A (2008). Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification. Pattern Recognition. 30th DAGM Symposium Munich, Germany, June 10-13, 2008. Proceedings. Springer. 5096 142-152PDF icon Technical Report (1.21 MB)
Straehle, C, Köthe, U, Briggman, K, Denk, W and Hamprecht, F A (2012). Seeded watershed cut uncertainty estimators for guided interactive segmentation. CVPR 2012. Proceedings. 765 - 772PDF icon Technical Report (2.84 MB)
Zhang, H, Hamprecht, F A and Amann, A (2005). Report about VOCs Dataset's Analysis based on Random Forests. Proceedings of the HPC-Asia05. IEEE Computer Society Press. 603-607PDF icon Technical Report (232.13 KB)
Andres, B, Köthe, U, Bonea, A, Nadler, B and Hamprecht, F A (2009). Quantitative Assessment of Image Segmentation Quality by Random Walk Relaxation Times. Pattern Recognition. 31st DAGM Symposium, Jena, Germany, September 9-11, 2009. Proceedings. Springer. 5748 502-511PDF icon Technical Report (3.08 MB)
Schiegg, M, Heuer, B, Haubold, C, Wolf, S, Köthe, U and Hamprecht, F A (2015). Proof-reading Guidance in Cell Tracking by Sampling from Tracking-by-assignment Models. ISBI. Proceedings. 394-398PDF icon Technical Report (648.55 KB)
Andres, B, Kappes, J H, Beier, T, Köthe, U and Hamprecht, F A (2011). Probabilistic Image Segmentation with Closedness Constraints. Proceedings of ICCVPDF icon Technical Report (2.95 MB)
Andres, B, Kappes, J H, Beier, T, Köthe, U and Hamprecht, F A (2011). Probabilistic Image Segmentation with Closedness Constraints. ICCV, Proceedings. 2611 - 2618PDF icon Technical Report (8.18 MB)
Yarkony, J, Beier, T, Baldi, P and Hamprecht, F A (2014). Parallel Multicut Segmentation via Dual Decomposition. New Frontiers in Mining Complex Patterns - Third International Workshop, {NFMCP} 2014, Held in Conjunction with {ECML-PKDD} 2014, Nancy, France, September 19, 2014, Revised Selected Papers. http://dx.doi.org/10.1007/978-3-319-17876-9_4
Menze, B, Kelm, B H, Splitthoff, N, Köthe, U and Hamprecht, F A (2011). On oblique random forests. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2011. Proceedings. Springer. 453-469PDF icon Technical Report (665.33 KB)

Pages