Publications

Export 180 results:
Author Title [ Type(Asc)] Year
Filters: Author is Schnörr, C.  [Clear All Filters]
Conference Paper
W. Peckar, Schnörr, C., Rohr, K., and Stiehl, H. S., Two-Step Parameter-Free Elastic Image Registration with Prescribed Point Displacements, in Proc. 9th Int. Conf. on Image Analysis and Processing (ICIAP'97), Florence, Italy, 1997.
S. Petra, Schnörr, C., Schröder, A., and Wieneke, B., Tomographic Image Reconstruction in Experimental Fluid Dynamics: Synopsis and Problems, in Proc. 6th Workshop on Modelling of Environmental and Life Sciences Problems (WMM 07), Constanta, Romania, 2007.
J. H. Kappes, Petra, S., Schnörr, C., and Zisler, M., TomoGC: Binary Tomography by Constrained Graph Cuts, in Proc. GCPR, 2015.
J. Neumann, Schnörr, C., and Steidl, G., SVM-based Feature Selection by Direct Objective Minimisation, in Pattern Recognition, Proc. 26th DAGM Symposium, 2004, vol. 3175, pp. 212-219.
C. Schellewald and Schnörr, C., Subgraph Matching with Semidefinite Programming, in Proc. Int. Workshop on Combinatorial Image Analysis (IWCIA'03), Palermo, Italy, 2003.
B. Savchynskyy, Kappes, J. H., Schmidt, S., and Schnörr, C., A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling, in IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2011.
S. Schmidt, Kappes, J. H., Bergtholdt, M., Pekar, V., Dries, S., Bystrov, D., and Schnörr, C., Spine Detection and Labeling Using a Parts-Based Graphical Model, in Proc. 20th International Conference on Information Processing in Medical Imaging (IPMI 2007), 2007, vol. 4584, pp. 122-133.
F. Lauer and Schnörr, C., Spectral Clustering of Linear Subspaces for Motion Segmentation, in Proc. IEEE Int. Conf. Computer Vision (ICCV'09), Kyoto, Japan, 2009.
S. Petra, Schröder, A., Wieneke, B., and Schnörr, C., On Sparsity Maximization in Tomographic Particle Image Reconstruction, in Pattern Recognition – 30th DAGM Symposium, 2008, vol. 5096, pp. 294–303.
S. Gerloff, Hagemann, A., Schnörr, C., Tieck, S., Stiehl, H. S., Dombrowski, R., Dreyer, M., and Wiesendanger, R., Semi–Automated Analysis of SXM Images, in Proc. 9th Int. Conf. on Scanning Tunneling Microscopy/Spectroscopy and Related Techniques (STM'97), Hamburg, Germany, 1997.
C. Schnörr, Segmentation of Visual Motion by Minimizing Convex Non-Quadratic Functionals, in 12th Int. Conf. on Pattern Recognition, Jerusalem, Israel, 1994.
P. Markowsky, Reith, S., Zuber, T. E., König, R., Rohr, K., and Schnörr, C., Segmentation of cell structure using model-based set covering with iterative reweighting, in Proc. ISBI, 2017.
L. Kostrykin, Schnörr, C., and Rohr, K., Segmentation of Cell Nuclei Using Intensity-Based Model Fitting and Sequential Convex Programming, in Proc. ISBI, 2018.
M. Heiler and Schnörr, C., Reverse-Convex Programming for Sparse Image Codes, in Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05), 2005, vol. 3757, pp. 600-616.
C. Schnörr, Repräsentation von Bilddaten mit einem konvexen Variationsansatz, in Mustererkennung 1996, Berlin, Heidelberg, 1996, pp. 21–28.
K. Wiehler, Grigat, R. –R., Heers, J., Schnörr, C., and Stiehl, H. –S., Real–Time Adaptive Smoothing with a 1D Nonlinear Relaxation Network in Analogue VLSI Technology, in Mustererkennung 1998, Heidelberg, 1998.
J. Weickert and Schnörr, C., Räumlich–zeitliche Berechnung des optischen Flusses mit nichtlinearen flussabhängigen Glattheitstermen, in Mustererkennung 1999, 1999, pp. 317–324.
C. Schellewald and Schnörr, C., Probabilistic Subgraph Matching Based on Convex Relaxation, in Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05), 2005, vol. 3757, pp. 171-186.
J. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts, in Proc. SSVM, 2015.
A. Vlasenko and Schnörr, C., Physically Consistent Variational Denoising of Image Fluid Flow Estimates, in Pattern Recognition – 30th DAGM Symposium, 2008, vol. 5096, pp. 406–415.
E. Bodnariuc, Petra, S., Poelma, C., and Schnörr, C., Parametric Dictionary-Based Velocimetry for Echo PIV, in Proc. CGPR, 2016.
J. Heers, Schnörr, C., and Stiehl, H. –S., Parallele und global konvergente iterative Minimierung nichtlinearer Variationsansätze zur adaptiven Glättung und Segmentation von Bildern, in Mustererkennung 1998, Heidelberg, 1998.
T. Kohlberger, Schnörr, C., Bruhn, A., and Weickert, J., Parallel Variational Motion Estimation by Domain Decomposition and Cluster Computing, in Computer Vision – ECCV 2004, 2004, vol. 3024, pp. 205-216.
P. Ruhnau, Stahl, A., and Schnörr, C., On-Line Variational Estimation of Dynamical Fluid Flows with Physics-Based Spatio-Temporal Regularization, in Proc. DAGM 2006, 2006, vol. 375-388, pp. 375-388.
F. Savarino, Hühnerbein, R., Aström, F., Recknagel, J., and Schnörr, C., Numerical Integration of Riemannian Gradient Flows for Image Labeling, in Proc. SSVM, 2017, vol. 10302.
W. Peckar, Schnörr, C., Rohr, K., and Stiehl, H. S., Non-Rigid Image Registration Using a Parameter-Free Elastic Model, in 9th British Machine Vision Conference (BMVC`98), Southampton/UK, 1998, pp. 134–143.
R. Sprengel and Schnörr, C., Nichtlineare Diffusion zur Integration visueller Daten - Anwendung auf Kernspintomogramme, in Mustererkennung 1993, 15. DAGM-Symposium, 1993, pp. 134–141.
M. Heiler and Schnörr, C., Natural Statistics for Natural Image Segmentation, in Proc. IEEE Int. Conf. Computer Vision (ICCV 2003), Nice, France, 2003, pp. 1259-1266.
J. H. Kappes, Schmidt, S., and Schnörr, C., MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation, in European Conference on Computer Vision (ECCV), 2010, vol. 6313, pp. 735–747.
C. Schnörr and Peckar, W., Motion-Based Identification of Deformable Templates, in Proc. 6th Int. Conf. on Computer Analysis of Images and Patterns (CAIP '95), Prague, Czech Republic, 1995, vol. 970, pp. 122-129.
M. Wulf, Stiehl, H. S., and Schnörr, C., Modeling spatiotemporal receptive fields in the primate retina, in Proc. Cognitive Neurosci. Conf., Bremen, Germany, 1999.
M. Wulf, Stiehl, H. S., and Schnörr, C., A model of spatiotemporal receptive fields in the primate retina, in Proc. 1st Göttingen Conf. German Neurosci. Soc., 1999, vol. II.
J. H. Kappes and Schnörr, C., MAP-Inference for Highly-Connected Graphs with DC-Programming, in Pattern Recognition – 30th DAGM Symposium, 2008, vol. 5096, pp. 1–10.
F. Aström, Hühnerbein, R., Savarino, F., Recknagel, J., and Schnörr, C., MAP Image Labeling Using Wasserstein Messages and Geometric Assignment, in Proc. SSVM, 2017, vol. 10302.
F. Rathke, Desana, M., and Schnörr, C., Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans, in Proc. MICCAI, 2017.

Pages