Publications

Export 277 results:
Author [ Title(Desc)] Type Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
Nicola, A, Petra, S, Popa, C and Schnörr, C (2009). On A General Extending And Constraining Procedure For Linear Iterative Methods. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9761PDF icon Technical Report (799.47 KB)
Nicola, A, Petra, S, Popa, C and Schnörr, C (2011). A general extending and constraining procedure for linear iterative methods. Int.~J.~Comp.~Math. http://dx.doi.org/10.1080/00207160.2011.634002PDF icon Technical Report (633.79 KB)
Savchynskyy, B, Kappes, J H, Swoboda, P and Schnörr, C (2013). Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation. NIPS. Proceedings. 1950-1958
Savchynskyy, B, Kappes, J H, Swoboda, P and Schnörr, C (2013). Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation. NIPSPDF icon Technical Report (499.17 KB)
Schnörr, C, Stiehl, H S and Grigat, R - R (1996). On Globally Asymptotically Stable Continuous-Time CNNs for Adaptive Smoothing of Multidimensional Signals. Proc. 4th IEEE Int. Workshop on Cellular Neural Networks and their Applications
Kappes, J H, Speth, M, Andres, B, Reinelt, G and Schnörr, C (2011). Globally Optimal Image Partitioning by Multicuts. EMMCVPR. SpringerPDF icon Technical Report (7.47 MB)
Kappes, J H, Speth, M, Andres, B, Reinelt, G and Schnörr, C (2011). Globally Optimal Image Partitioning by Multicuts. EMMCVPR. Springer. 31-44PDF icon Technical Report (7.3 MB)
Schmitzer, B and Schnörr, C (2015). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes. J.~Math.~Imag.~Vision. 52 436--458. http://link.springer.com/article/10.1007/s10851-014-0546-8PDF icon Technical Report (1.97 MB)
Schmitzer, B and Schnörr, C (2014). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein ModesPDF icon Technical Report (2.9 MB)
Heers, J, Schnörr, C and Stiehl, H S (2001). Globally--Convergent Iterative Numerical Schemes for Non--Linear Variational Image Smoothing and Segmentation on a Multi--Processor Machine. IEEE Trans.~Image Proc. 10 852--864
Karim, R, Bergtholdt, M, Kappes, J H and Schnörr, C (2007). Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification. Pattern Recognition -- 29th DAGM Symposium. Springer. 4713 395-404PDF icon Technical Report (491.56 KB)
L
Bergtholdt, M, Kappes, J H and Schnörr, C (2006). Learning of Graphical Models and Efficient Inference for Object Class Recognition. Proc.~DAGM 2006. Springer. 375-388 375-388
Heiler, M and Schnörr, C (2005). Learning Sparse Image Codes by Convex Programming. Proc.~Tenth IEEE Int.~Conf.~Computer Vision (ICCV'05). 1667-1674
Heiler, M and Schnörr, C (2006). Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Programming. J.~Mach.~Learning Res. 7 1385--1407. http://www.cvgpr.uni-mannheim.de/Publications
Cremers, D, Schnörr, C, Weickert, J and Schellewald, C (2000). Learning Translation Invariant Shape Knowledge for Steering Diffusion-Snakes. 3rd Workshop on Dynamic Perception. Akad.~Verlagsges. 9 117--122
Peckar, W, Schnörr, C, Rohr, K, Stiehl, H S and Spetzger, U (1998). Linear and Incremental Estimation of Elastic Deformations in Medical Registration Using Prescribed Displacements. Machine Graphics & Vision. 7 807--829
Weber, S, Schüle, T, Schnörr, C and Hornegger, J (2003). A Linear Programming Approach to Limited Angle 3D Reconstruction from DSA Projections. Bildverarbeitung für die Medizin 2003. Springer Verlag. 41--45
Weber, S, Schüle, T, Schnörr, C and Hornegger, J (2004). A Linear Programming Approach to Limited Angle 3D Reconstruction from DSA Projections. Methods of Information in Medicine. 43 320--326
Weber, S, Schnörr, C and Hornegger, J (2003). A Linear Programming Relaxation for Binary Tomography with Smoothness Priors. Proc.~Int.~Workshop on Combinatorial Image Analysis (IWCIA'03)
Bruhn, A, Weickert, J and Schnörr, C (2005). Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods. IJCV. 61 211-231
M
Kappes, J H and Schnörr, C (2008). MAP-Inference for Highly-Connected Graphs with DC-Programming. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 1--10PDF icon Technical Report (1.91 MB)
Kappes, J H, Beier, T and Schnörr, C (2014). MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves. Computer Vision - {ECCV} 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part {II}. http://dx.doi.org/10.1007/978-3-319-16181-5_37PDF icon Technical Report (557.49 KB)

Pages