Export 1929 results:
Author Title Type [ Year(Asc)]
Fita, E (2019). Semi-Supervised Distance-Based Segmentation. Heidelberg University
Voigt, P (2019). Simulation And Measurement Of The Water-Sided Viscous Shear Stress Without Waves. Institut für Umweltphysik, Universität Heidelberg, Germany
Storath, M, Kiefer, L and Weinmann, A (2019). Smoothing for signals with discontinuities using higher order Mumford-Shah models. Numerische Mathematik. 143(2) 423-460PDF icon Technical Report (1.09 MB)
Desana, M and Schnörr, C (2019). Sum-Product Graphical Models. Machine Learning.
Censor, Y, Petra, S and Schnörr, C (2019). Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case. preprint: arXiv.
Großkinsky, (2019). Synaptic Cleft Prediction On Electron Microsope Images. Heidelberg University
Esposito, M, Hennersperger, C, Göbl, R, Demaret, L, Storath, M, Navab, N, Baust, M and Weinmann, A (2019). Total variation regularization of pose signals with an application to 3D freehand ultrasound. IEEE Transactions on Medical Imaging. 38(10) 2245-2258
Xiao, S (2019). Tracking Dividing Cells Using Spatio-Temporal Embeddings. Heidelberg
Zern, A, Zisler, M, Petra, S and Schnörr, C (2019). Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment. preprint: arXiv.
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment. Proc. SSVM. Springer
Lorenz, D, Bereska, L, Milbich, T and Ommer, B (2019). Unsupervised Part-Based Disentangling of Object Shape and Appearance. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Oral + Best paper finalist: top 45 / 5160 submissions)
Esser, P, Haux, J and Ommer, B (2019). Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis. Proceedings of the Intl. Conf. on Computer Vision (ICCV).
Kotovenko, D, Sanakoyeu, A, Lang, S, Ma, P and Ommer, B (2019). Using a Transformation Content Block For Image Style Transfer. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Savarino, F and Schnörr, C (2019). A Variational Perspective on the Assignment Flow. Proc. SSVM. Springer
Ufer, N, Lui, K To, Schwarz, K, Warkentin, P and Ommer, B (2019). Weakly Supervised Learning of Dense SemanticCorrespondences and Segmentation. German Conference on Pattern Recognition (GCPR)PDF icon article (6.1 MB)
Pandey, N (2019). Weakly Supervised Semantic Segmentation. Heidelberg University
Bopp, M (2018). Air-Flow and Stress Partitioning over Wind Waves in a Linear Wind-Wave Facility. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, Heidelberg. Dissertation
Lang, S and Ommer, B (2018). Attesting Similarity: Supporting the Organization and Study of Art Image Collections with Computer Vision. Digital Scholarship in the Humanities, Oxford University Press. 33 845-856
Abu Alhaija, H, Mustikovela, S Karthik, Mescheder, L, Geiger, A and Rother, C (2018). Augmented Reality Meets Computer Vision. International Journal of Computer Vision. In press 1–13
Abu Alhaija, H, Mustikovela, S Karthik, Mescheder, L, Geiger, A and Rother, C (2018). Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes. International Journal of Computer Vision. 126 961–972.
Abu Alhaija, H, Mustikovela, S K, Mescheder, A, Geiger, C and Rother, C (2018). Augmented Reality Meets Computer Vision Efficient Data Generation for Urban Driving Scenes. IJCV. 1-12PDF icon Technical Report (3.83 MB)
Hodaň, T, Michel, F, Brachmann, E, Kehl, W, Buch, A Glent, Kraft, D, Drost, B, Vidal, J, Ihrke, S, Zabulis, X, Sahin, C, Manhardt, F, Tombari, F, Kim, T Kyun, Matas, J and Rother, C (2018). BOP: Benchmark for 6D object pose estimation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11214 LNCS 19–35.
Bell, P and Ommer, B (2018). Computer Vision und Kunstgeschichte — Dialog zweier Bildwissenschaften. Computing Art Reader: Einführung in die digitale Kunstgeschichte, P. Kuroczyński et al. (ed.)PDF icon 413-17-83318-2-10-20181210.pdf (2.98 MB)
Arnab, A, Zheng, S, Jayasumana, S, Romera-paredes, B, Kirillov, A, Savchynskyy, B, Rother, C, Kahl, F and Torr, P (2018). Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation. Cvpr. XX 1–15.
Sayed, N, Brattoli, B and Ommer, B (2018). Cross and Learn: Cross-Modal Self-Supervision. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, Germany. icon Article (891.47 KB)PDF icon Oral slides (9.17 MB)
Cerrone, L (2018). Deep End-To-End Learning Of A Diffusion Process For Seeded Image Segmentation. Heidelberg University
Sanakoyeu, A, Bautista, M and Ommer, B (2018). Deep Unsupervised Learning of Visual Similarities. Pattern Recognition. 78. PDF icon PDF (8.35 MB)
Weilbach, C (2018). Dictionary Learning With Bayesian Gans For Few-Shot Classification. Heidelberg University
Wahl, A - S, Erlebach, E, Brattoli, B, Büchler, U, Kaiser, J, Ineichen, V B, Mosberger, A C, Schneeberger, S, Imobersteg, S, Wieckhorst, M, Stirn, M, Schroeter, A, Ommer, B and Schwab, M E (2018). Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats. Sage Journals. Journal of Cerebral Blood Flow & Metabolism. icon 0271678x18777661.pdf (770.87 KB)
Hehn, T and Hamprecht, F A (2018). End-to-end Learning of Deterministic Decision Trees. German Conference on Pattern Recognition. Proceedings. Springer. LNCS 11269 612-627PDF icon Technical Report (1.4 MB)
Draxler, F (2018). The Energy Landscape Of Deep Neural Networks. Heidelberg University
Draxler, F, Veschgini, K, Salmhofer, M and Hamprecht, F A (2018). Essentially No Barriers in Neural Network Energy Landscape. ICML. Proceedings. 80 1308--1317PDF icon Technical Report (685.93 KB)
Haller, S, Swoboda, P and Savchynskyy, B (2018). Exact MAP-Inference by Confining Combinatorial Search With LP Relaxation. Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. AAAI Press. icon 2018-02-02_aaai_dense_combilp.pdf (325.08 KB)
Storath, M and Weinmann, A (2018). Fast median filtering for phase or orientation data. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40 639–652PDF icon Technical Report (7.32 MB)
Rathke, F and Schnörr, C (2018). Fast Multivariate Log-Concave Density Estimation. preprint: arXiv.