Publications

Export 1929 results:
Author Title [ Type(Desc)] Year
Journal Article
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. Int.~J.~Comp.~VisionPDF icon Technical Report (5.12 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. abs/1404.0533. http://hci.iwr.uni-heidelberg.de/opengm2/PDF icon Technical Report (3.32 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 1-30PDF icon Technical Report (1.5 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. http://arxiv.org/abs/1404.0533
Lange, P A, Jähne, B, Tschiersch, J and Ilmberger, J (1982). Comparison between an amplitude-measuring wire and a slope-measuring laser water wave gauge. Rev. Sci. Instrum. 53 651--655
Weber, C, Zechmann, C M, Kelm, B Michael, Zamecnik, R, Hendricks, D, Waldherr, R, Hamprecht, F A, Delorme, S, Bachert, P and Ikinger, U (2007). Comparison of correctness of manuel and automatic evaluation of MR-spectrum with prostrate cancer. Der Urologe. 46 1252
Marxen, M, Sullivan, P E, Loewen, M R and Jähne, B (2000). Comparison of Gaussian particle center estimators and the achievable measurement density for particle tracking velocimetry. Exp. Fluids. 29 145-153
Menze, B H, Kelm, B Michael, Masuch, R, Himmelreich, U, Bachert, P, Petrich, W and Hamprecht, F A (2009). A Comparison of Random Forest and its Gini Importance with Standard Chemometric Methods for the Feature Selection and Classification of Spectral Data. BMC Bioinformatics. 10:213PDF icon Technical Report (675 KB)
Schnörr, (1992). Computation of Discontinuous Optical Flow by Domain Decomposition and Shape Optimization. ijcv. 8 153–165
Rathke, F and Schnörr, C (2015). A Computational Approach to Log-Concave Density Estimation. An. St. Univ. Ovidius Constanta. 23 151-166
Rathke, F and Schnörr, C (2015). A Computational Approach to Log-Concave Density Estimation. An. St. Univ. Ovidius Constanta. 23 151-166PDF icon Technical Report (1.07 MB)
Kirchner, M, Renard, B Y, Köthe, U, Pappin, D J, Hamprecht, F A, Steen, J A J and Steen, H (2010). Computational Protein Profile Similarity Screening for Quantitative Mass Spectrometry Experiments. Bioinformatics. 26 (1) 77-83PDF icon Technical Report (380.19 KB)
Kandemir, M and Hamprecht, F A (2014). Computer-aided diagnosis from weak supervision: A benchmarking study. Computerized Medical Imaging and Graphics. 42 44-50PDF icon Technical Report (4.28 MB)
Haußecker, H and Fleet, D J (2001). Computing optical flow with physical models of brightness variation. IEEE Trans. Pattern Analysis Machine Intelligence. 23 661--673
Hanselmann, M, Kirchner, M, Renard, B Y, Amstalden, E R, Glunde, K, Heeren, R M A and Hamprecht, F A (2008). Concise Representation of MS Images by Probabilistic Latent Semantic Analysis. Analytical Chemistry. 80 9649-9658PDF icon Technical Report (3.91 MB)
Arnab, A, Zheng, S, Jayasumana, S, Romera-paredes, B, Kirillov, A, Savchynskyy, B, Rother, C, Kahl, F and Torr, P (2018). Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation. Cvpr. XX 1–15. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.8889&rep=rep1&type=pdf%0Ahttp://dx.doi.org/10.1109/CVPR.2012.6248050
Lellmann, J and Schnörr, C (2011). Continuous Multiclass Labeling Approaches and Algorithms. CoRR. abs/1102.5448. http://arxiv.org/abs/1102.5448
Lellmann, J and Schnörr, C (2011). Continuous Multiclass Labeling Approaches and Algorithms. SIAM J.~Imag.~Sci. 4 1049-1096PDF icon Technical Report (4.31 MB)
Savarino, F and Schnörr, C (2019). Continuous-Domain Assignment Flows. preprint: arXiv. https://arxiv.org/abs/1910.07287
Yuan, J, Schnörr, C and Steidl, G (2009). Convex Hodge Decomposition and Regularization of Image Flows. J.~Math.~Imag.~Vision. 33 169-177PDF icon Technical Report (1003.75 KB)
Swoboda, P and Schnörr, C (2013). Convex Variational Image Restoration with Histogram Priors. SIAM J.~Imag.~Sci. 6 1719-1735PDF icon Technical Report (553.54 KB)
Hering, M, Körner, K and Jähne, B (2009). Correlated speckle noise in white-light interferometry: theoretical analysis of measurement uncertainty. Appl. Optics. 48 525--538
Maco, B, Holtmaat, A, Cantoni, M, Kreshuk, A, Straehle, C N, Hamprecht, F A and Knott, G W (2013). Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons. PloS one. 8 (2)PDF icon Technical Report (2.13 MB)
Petra, S, Schnörr, C and Schröder, A (2013). Critical Parameter Values and Reconstruction Propertiesof Discrete Tomography: Application to Experimental FluidDynamics. Fundamenta Informaticae. 125 285--312PDF icon Technical Report (1.42 MB)
Lu, G -hung, Tsai, W -ting and Jähne, B (2019). Decomposing infrared images of wind waves for quantitative separation into characteristic flow processes. IEEE Transactions on Geoscience and Remote Sensing. 57 8304–8316
Dencker, T, Klinkisch, P, Maul, S M and Ommer, B (2020). Deep learning of cuneiform sign detection with weak supervision using transliteration alignment. PLoS ONE. 15. https://hci.iwr.uni-heidelberg.de/compvis/projects/cuneiform
Kleesiek, J, Urban, G, Hubert, A, Schwarz, D, Maier-Hein, K, Bendszus, M and Biller, A (2016). Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.. NeuroImage. 129 460-469PDF icon Technical Report (1.14 MB)
Sanakoyeu, A, Bautista, M and Ommer, B (2018). Deep Unsupervised Learning of Visual Similarities. Pattern Recognition. 78. https://authors.elsevier.com/a/1WXUt77nKSb25 PDF icon PDF (8.35 MB)
Bollweg, S, Haußmann, M, Kasieczka, G, Luchmann, M, Plehn, T and Thompson, J (2020). Deep-Learning Jets with Uncertainties and More. SciPost Phys. 8. https://scipost.org/10.21468/SciPostPhys.8.1.006PDF icon Technical Report (1.65 MB)
Frank, M, Plaue, M and Hamprecht, F A (2009). Denoising of Continuous-Wave Time-Of-Flight Depth Images Using Confidence Measures. Optical Engineering. 48, 077003PDF icon Technical Report (2.5 MB)
Schilling, H, Diebold, M, Gutsche, M and Jähne, B (2017). On the design of a fractal calibration pattern for improved camera calibration. tm - Technisches Messen. 84 440–451
Menze, B H, Ur, J A and Sherratt, A G (2006). Detection of ancient settlement mounds - Archaeological survey based on the SRTM terrain model. Photgrammetric Engineering & Remote Sensing. 3 321-327PDF icon Technical Report (643.89 KB)
Eyjolfsdottir, E, Branson, S, Burgos-Artizzu, X P, Hoopfer, E D, Schor, J, Anderson, D J and Perona, P (2014). Detection of social actions in fruit flies. Lecture Notes in Computer Science. Springer International Publishing, Cham. 8690 772–787. http://link.springer.com/10.1007/978-3-319-10605-2 http://www.ncbi.nlm.nih.gov/pubmed/31629782
Schnörr, (1991). Determining Optical Flow for Irregular Domains by Minimizing Quadratic Functionals of a Certain Class. ijcv. 6 25–38

Pages