Publications

Export 1952 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Lindner, R, Lou, X, Reinstein, J, Shoeman, R L, Hamprecht, F A and Winkler, A (2014). Hexicon 2: Automated Processing of Hydrogen-Deuterium Exchange Mass Spectrometry Data with Improved Deuteration Distribution Estimation. Journal of The American Society for Mass Spectrometry. 25 1018-1028PDF icon Technical Report (2.1 MB)
Diebold, M, Gatto, A and Jähne, B (2016). Heterogeneous Light Fields. 2016 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2016, Las Vegas, NV, USA, June 27-30, 2016. http://dx.doi.org/10.1109/CVPR.2016.193
Jähne, B, Schimpf, U, Garbe, C S and Degreif, K (2005). The Heidelberg Aeolotron: new perspectives for laboratory investigations of small-scale air-sea interaction. Poster presented at: International Liege Colloquium on Ocean Dynamics, Gas Transfer at Water Surfaces
Jähne, B, Haußecker, H, Schimpf, U and Balschbach, G (1999). The Heidelberg Aeolotron - a new facility for laboratory investigations of small scale air-sea interaction. Poster presented at: The Wind-Driven Air-Sea Interface: Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes
Jähne, B, Haußecker, H, Schimpf, U and Balschbach, G (1999). The Heidelberg Aelotron --- a new facility for laboratory investigations of small-scale air-sea interaction. The Wind-Driven Air-Sea Interface: Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes
Haußecker, H, Reinelt, S, Jähne, B and Jähne, B (1995). Heat as a proxy tracer for gas exchange measurements in the field: principles and technical realization. Air--Water Gas Transfer: Selected Papers from the Third International Symposium on Air--Water Gas Transfer. AEON. 405--413
Jähne, B, Wais, T, Memery, L, Caulliez, G, Merlivat, L, Münnich, K O and Coantic, M (1985). He and Rn gas exchange experiments in the large wind-wave facility of IMST. J. Geophys. Res. 90 11,989--11,998
Balschbach, G (2004). Hd-Whoi Measurements October 2004 Cisg. Institute for Environmental Physics, University of Heidelberg
Jehle, M (2011). Hci's Parabolic Lighting Facility - Design And Usage. Heidelberg Collaboratory for Image Processing, University of Heidelberg
Honauer, K, Maier-Hein, L and Kondermann, D (2015). The HCI Stereo Metrics: Geometry-Aware Performance Analysis of Stereo Algorithms. The IEEE International Conference on Computer Vision (ICCV)
Kondermann, D, Nair, R, Honauer, K, Krispin, K, Andrulis, J, Brock, A, Güssefeld, B, Rahimimoghaddam, M, Hofmann, S, Brenner, C and Jähne, B (2016). The HCI Benchmark Suite: Stereo and Flow Ground Truth With Uncertainties for Urban Autonomous Driving. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
Jähne, B, Geißler, P and Haußecker, H (1999). Handbook Of Computer Vision And Applications. Academic Press
G
Jähne, (1999). Gut beleuchtet ist halb gemessen. QZ. 44 1283--1288. https://www.qz-online.de/qz-zeitschrift/archiv/artikel/art-der-lichtquelle-und-der-einstrahlbedingungen-sind-entscheidend-gut-beleuchtet-ist-halb-gemessen-345974.html
Ardizzone, L, Lüth, C, Kruse, J, Rother, C and Köthe, U (2019). Guided Image Generation with Conditional Invertible Neural Networks. http://arxiv.org/abs/1907.02392
Ardizzone, L, Lüth, C, Kruse, J, Rother, C and Köthe, U (2019). Guided Image Generation with Conditional Invertible Neural Networks. http://arxiv.org/abs/1907.02392
Nair, R, Meister, S, Lambers, M, Balda, M, Hofmann, H, Kolb, A, Kondermann, D and Jähne, B (2012). Ground truth for evaluating time of flight imaging. Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications. Springer. 8200 52--74
Karim, R, Bergtholdt, M, Kappes, J H and Schnörr, C (2007). Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification. Pattern Recognition -- 29th DAGM Symposium. Springer. 4713 395-404PDF icon Technical Report (491.56 KB)
Karim, R, Bergtholdt, M, Kappes, J H and Schnörr, C (2007). Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification. Pattern Recognition – 29th DAGM Symposium. Springer. 4713 395-404
Schiegg, M, Hanslovsky, P, Haubold, C, Köthe, U, Hufnagel, L and Hamprecht, F A (2015). Graphical Model for Joint Segmentation and Tracking of Multiple Dividing Cell. Bioinformatics. 31 948-956. http://bioinformatics.oxfordjournals.org/content/early/2014/11/17/bioinformatics.btu764.full.pdf?keytype=ref&ijkey=mTXWsiFrci7R8tcPDF icon Technical Report (534.29 KB)
Abu Alhaija, H, Sellent, A, Kondermann, D and Rother, C (2015). Graphflow—6D large displacement scene flow via graph matching. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9358 285–296
Haja, A (2008). Graph-based Spatial Motion Tracking using Affine-covariant Regions. IWR, Fakultät für Mathematik und Informatik, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/8943
Vicente, S, Kolmogorov, V and Rother, C (2008). Graph cut based image segmentation with connectivity priors. 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Beier, T (2014). Graph Based Image Analysis. University of Heidelberg
Zisler, M, Savarino, F, Petra, S and Schnörr, C (2017). Gradient Flows on a Riemannian Submanifold for Discrete Tomography. Proc. GCPR
Rother, C, Kolmogorov, V and Blake, A (2004). "GrabCut" - Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics. 23 309–314
Wenig, M (2001). GOME-Spurenstoffauswertung und Bildverarbeitung. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Leue, C, Wenig, M, Jähne, B and Platt, U (1998). GOME mißt atmosphärische Stickoxide. Globale Biomassenverbrennung und Industrieemissionen. Physik in unserer Zeit. 29 179
Heers, J, Schnörr, C and Stiehl, H S (2001). Globally–Convergent Iterative Numerical Schemes for Non–Linear Variational Image Smoothing and Segmentation on a Multi–Processor Machine. IEEE Trans. Image Proc. 10 852–864
Kostrykin, L, Schnörr, C and Rohr, K (2019). Globally Optimal Segmentation of Cell Nuclei in Fluoroscence Microscopy Images using Shape and Intensity Information. Medical Image Analysis. https://doi.org/10.1016/j.media.2019.101536
Schmitzer, B and Schnörr, C (2014). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein ModesPDF icon Technical Report (2.9 MB)
Schmitzer, B and Schnörr, C (2015). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes. J.~Math.~Imag.~Vision. 52 436--458. http://link.springer.com/article/10.1007/s10851-014-0546-8PDF icon Technical Report (1.97 MB)
Schmitzer, B and Schnörr, C (2014). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes
Schmitzer, B and Schnörr, C (2015). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes. J. Math. Imag. Vision. 52 436–458. http://link.springer.com/article/10.1007/s10851-014-0546-8
Kappes, J H, Speth, M, Andres, B, Reinelt, G and Schnörr, C (2011). Globally Optimal Image Partitioning by Multicuts. EMMCVPR. SpringerPDF icon Technical Report (7.47 MB)
Kappes, J Hendrik, Speth, M, Andres, B, Reinelt, G and Schnörr, C (2011). Globally Optimal Image Partitioning by Multicuts. EMMCVPR. Springer

Pages