Publications

Export 1937 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
Ommer, B and Malik, J (2009). Multi-scale Object Detection by Clustering Lines. Proceedings of the IEEE International Conference on Computer Vision. IEEE. 484--491PDF icon Technical Report (3.18 MB)
Ommer, B (2008). Seeing The Objects Behind The Parts: Learning Compositional Models For Visual Recognition. VDM Verlag. http://www.amazon.com/Seeing-Objects-Behind-Parts-Compositional/dp/3639021444/ref=sr_1_1?ie=UTF8&s=books&qid=1232659136&sr=1-1
Ommer, B and Buhmann, J M (2007). Compositional Object Recognition, Segmentation, and Tracking in Video. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 4679 318--333PDF icon Technical Report (2.78 MB)
Ommer, B and Buhmann, J M (2007). Learning the Compositional Nature of Visual Objects. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 1--8PDF icon Technical Report (2.78 MB)
Ommer, B, Sauter, M and M., B J (2006). Learning Top-Down Grouping of Compositional Hierarchies for Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Perceptual Organization in Computer Vision. IEEE. 194--194PDF icon Technical Report (358.98 KB)
Ommer, B and Buhmann, J M (2006). Learning Compositional Categorization Models. Proceedings of the European Conference on Computer Vision. Springer. 3953 316--329PDF icon Technical Report (1.35 MB)
Ommer, B and Buhmann, J M (2005). Object Categorization by Compositional Graphical Models. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 3757 235--250PDF icon Technical Report (2.07 MB)
Ommer, B and Buhmann, J M (2003). A Compositionality Architecture for Perceptual Feature Grouping. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 2683 275--290PDF icon Technical Report (2.89 MB)
Ozlu, N, Monigatti, F, Renard, B Y, Field, C M, Steen, H, Mitchison, T J and Steen, J J (2009). Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition. Molecular & Cellular Proteomics
P
Pandey, N (2019). Weakly Supervised Semantic Segmentation. Heidelberg University
Pape, C (2016). Automatic Segmentation Of Neurites From Anisotropic Em-Imaging. University of Heidelberg
Pape, C, Beier, T, Li, P, Jain, V, Brock, D D and Kreshuk, A (2017). Solving Large Multicut Problems for Connectomics via Domain Decomposition. Bioimage Computing Workshop. ICCV. 1-10
Pape, C, Remme, R, Wolny, A, Olberg, S, Wolf, S, Cerrone, L, Cortese, M, Klaus, S, Lucic, B, Ullrich, S, Anders-Össwein, M, Wolf, S, Cerikan, B, Neufeldt, C J, Ganter, M, Schnitzler, P, Merle, U, Lusic, M, Boulant, S, Stanifer, M, Bartenschlager, R, Hamprecht, F A, Kreshuk, A, Tischer, C, Kräusslich, H - G, Müller, B and Laketa, V (2020). Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific antibodies in human sera. BioEssays, in press
Papst, M (2019). Development Of A Method For Quantitative Imaging Of Air-Water Gas Exchange. Institut für Umweltphysik, Universität Heidelberg, Germany
(2005). Variational, Geometric and Level Sets in Computer Vision (VLSM'05). lncs. Springer, Beijing, China. 3752
Pavlov, P (2008). Analysis of Motion in Scale Space. IWR, Fakultät für Mathematik und Informatik, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9378
Peckar, W, Schnörr, C, Rohr, K and Stiehl, H S (1998). Non-Rigid Image Registration Using a Parameter-Free Elastic Model. 9th British Machine Vision Conference (BMVC`98). Southampton/UK. 134–143
Peckar, W, Schnörr, C, Rohr, K and Stiehl, H S (1997). Two-Step Parameter-Free Elastic Image Registration with Prescribed Point Displacements. Proc. 9th Int. Conf. on Image Analysis and Processing (ICIAP'97). Florence, Italy
Peckar, W, Schnörr, C, Rohr, K and Stiehl, H –S (1999). Parameter-Free Elastic Deformation Approach for 2D and 3D Registration Using Prescribed Displacements. J. Math. Imaging and Vision. 10 143–162
Peckar, W, Schnörr, C, Rohr, K, Stiehl, H –S and Spetzger, U (1998). Linear and Incremental Estimation of Elastic Deformations in Medical Registration Using Prescribed Displacements. Machine Graphics & Vision. 7 807–829
Peter, S (2015). Spatio-Temporal Motif Deconvolution For Calcium Image Analysis. University of Heidelberg
Peter, S (2019). Machine learning under test-time budget constraints. Heidelberg University
Peter, S, Diego, F, Hamprecht, F A and Nadler, B (2017). Cost-efficient Gradient Boosting. NIPS, poster
Peter, S, Kirschbaum, E, Both, M, Campbell, L A, Harvey, B K, Heins, C, Durstewitz, D, Diego, F and Hamprecht, F A (2017). Sparse convolutional coding for neuronal assembly detection. NIPS, poster
Petra, S, Popa, C and Schnörr, C (2009). Accelerating Constrained Sirt With Applications In Tomographic Particle Image Reconstruction. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9477PDF icon Technical Report (3.33 MB)
Petra, S, Popa, C and Schnörr, C (2008). Extended And Constrained Cimmino-Type Algorithms With Applications In Tomographic Image Reconstruction. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/8798/PDF icon Technical Report (2.13 MB)
Petra, S and Schnörr, C (2009). Tomopiv Meets Compressed Sensing. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9760PDF icon Technical Report (646.75 KB)
Petra, S, Schnörr, C, Becker, F and Lenzen, F (2013). B-SMART: Bregman-Based First-Order Algorithms for Non-Negative Compressed Sensing Problems. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM) 2013. Springer. 7893 110-124PDF icon Technical Report (1.15 MB)
Petra, S and Schnörr, C (2014). Average Case Recovery Analysis of Tomographic Compressive Sensing. Linear Algebra and its Applications. 441 168-198PDF icon Technical Report (1.85 MB)
Petra, S and Schnörr, C (2009). TomoPIV meets Compressed Sensing. Pure Math.~Appl. 20 49 -- 76. http://www.mat.unisi.it/newsito/puma/public_html/contents.phpPDF icon Technical Report (409.1 KB)
Petra, S, Schnörr, C and Schröder, A (2013). Critical Parameter Values and Reconstruction Propertiesof Discrete Tomography: Application to Experimental FluidDynamics. Fundamenta Informaticae. 125 285--312PDF icon Technical Report (1.42 MB)
Petra, S, Schröder, A, Wieneke, B and Schnörr, C (2008). On Sparsity Maximization in Tomographic Particle Image Reconstruction. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 294--303PDF icon Technical Report (1014.71 KB)
Petra, S, Schröder, A and Schnörr, C (2009). 3D Tomography from Few Projections in Experimental Fluid Mechanics. Imaging Measurement Methods for Flow Analysis. Springer. 106 63-72PDF icon Technical Report (411.51 KB)
Petra, S, Schnörr, C, Becker, F and Lenzen, F (2013). B-SMART: Bregman-Based First-Order Algorithms for Non-Negative Compressed Sensing Problems. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM. 110-124
Petra, S, Popa, C and Schnörr, C (2008). Extended And Constrained Cimmino-Type Algorithms With Applications In Tomographic Image Reconstruction. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/8798/

Pages